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Theoretical models suggest that adult sex ratio (ASR) and population density are expected to influence
parental roles by reducing the mating opportunities of the commoner sex and by changing the intensity
of sperm competition, although experimental evidence for these predictions is sparse. In biparental
species with a high risk of extrapair paternity and consecutive egg laying over the breeding period, males
are expected to reduce their parental investment and to spend more time on mate guarding if male
density is high, to maximize their fitness. We conducted a field experiment to test this hypothesis in
Lethrus apterus, a flightless biparental beetle species from the Geotrupidae family. Using seminatural
enclosures, we assigned individuals to nine treatment groups differing in adult sex ratio (three levels)
and individual density (three levels) using a full factorial experimental design. Nest attendance and
parental provisioning (i.e. collecting and transporting leaves to the nest) were recorded as well as the
number, size and sex ratio of the offspring. We found that as the level of maleemale competition
increased, generated either by the increased density of individuals or by the male-biased sex ratio, pairs
showed higher nest attendance and collected fewer leaves. Male-biased groups also produced fewer
offspring under high and low densities indicating a possible conflict of interest between the sexes over
paternity and brood size. These results support the increased paternity assurance hypothesis under a
high level of intrasexual competition.
© 2017 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Parental care, defined by Smiseth, K€olliker, and Royle (2012, p.
7) as ‘any parental trait that enhances the fitness of a parent's
offspring, and that is likely to have originated and/or to be
currentlymaintained for this function’ is most commonly observed
in females, especially among mammals (Kleiman&Malcolm, 1981)
and invertebrates (Smiseth & Moore, 2004; Suzuki, 2013; Tallamy
& Wood, 1986; Zeh & Smith, 1985). Even in biparental systems,
where both parents care for the offspring, females in many species
tend to invest more in parental activities than males (Kosztol�anyi,
Nagy, Kov�acs,& Barta, 2015; Quinn, 1990). One explanation for this
difference is that females have greater certainty of parentage than
males, if sperm competition exists (Queller, 1997). Parents are
expected to adjust their parental investment to the level of
competition among males for females which is highly influenced
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by the population density (Manica & Johnstone, 2004) and the
adult sex ratio (ASR, the proportion of males in the adult popula-
tion; Houston & McNamara, 2002; Sz�ekely, Weissing, & Komdeur,
2014). There has been little previous work to investigate how the
ASR affects mating behaviour (e.g. Le Galliard, Fitze, Cote, Massot,
& Clobert, 2005; Vahl, Boiteau, de Heij, MacKinley, & Kokko, 2013),
and most theoretical and empirical studies have focused on the
effects of the operational sex ratio (OSR, ratio of sexually active
males to females; e.g. Emlen & Oring, 1977; Forsgren, Amundsen,
Borg, & Bjelvenmark, 2004; Pomfret & Knell, 2008). It is impor-
tant, however, to distinguish between the two, since the ASR is
based on the demographic properties of the population while the
OSR depends also on the individual's decisions, and so their effects
on mate choice and parental care cannot be equated (reviewed by
Carmona-Isunza et al., 2017; Kokko & Jennions, 2008; Sz�ekely
et al., 2014).

According to theory, a skewed ASR and high population density
reduce the mating opportunities of the commoner sex and hence
evier Ltd. All rights reserved.
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increase the level of intrasexual competition and sexual selection
(Kokko& Jennions, 2008; Queller, 1997). When, for example, ASR is
male-biased, males may not be able to reproduce faster than fe-
males, owing to their low chance of finding a new mate (Kokko &
Jennions, 2008). In this context, many studies, using primarily
birds as model systems, found that males should invest more in
parental care to maximize their fitness (Burley & Calkins, 1999;
Kokko & Jennions, 2012; Liker, Freckleton, & Sz�ekely, 2014, 2013;
Reme�s, Freckleton, T€ok€olyi, Liker, & Sz�ekely, 2015). However, in a
surplus of males there is also a higher chance of extrapair copu-
lations increasing the risk of sperm competition and reducing
certainty of paternity. If paternity certainty is low, females may
gain higher fitness benefits by caring than males (Alonzo, 2010;
Simmons, 2014; Trivers, 1972); therefore, males are expected to
desert (Kokko & Jennions, 2012) or to invest more in ensuring
paternity (Fromhage, McNamara, & Houston, 2008; Yamamura,
1986) and less in caring (Alonzo, 2010; Fromhage & Jennions,
2016; Houston & McNamara, 2002; Neff, 2003; Westneat &
Sherman, 1993). Desertion, however, may not be beneficial under
a male-biased sex ratio if the chance of finding a new mate is low.
Paternity assurance may be especially important in species where
egg laying is continuous throughout the time of care causing the
risk of sperm competition to spread over the entire breeding
season. In these species, cues indicating reduced certainty of pa-
ternity (e.g. social competitive environment generated by high
male ratio) may increase mate guarding while reducing the in-
vestment in actual paternal activities. High population density
may further strengthen the effects of a biased ASR through the
increased number of interactions between individuals resulting in
even stronger intrasexual competition (Emlen, Marangelo, Ball, &
Cunningham, 2005) and a higher risk of sperm competition.
Indeed, several studies have demonstrated that changes solely in
population density can also influence mating behaviour and
reproductive success (e.g. Jirotkul, 1999; Spence & Smith, 2005;
Warner & Hoffman, 1980).

Lethrus apterus is one of the few known beetle species that
shows biparental care. At the beginning of the breeding season in
early spring, individuals dig a 10e20 cm deep underground tunnel
for themselves which serves as a shelter before they find a partner.
Paired beetles prepare a 50e90 cm deep burrow, terminating in six
to eight brood chambers with a single egg developing in each
(Clutton-Brock, 1991; Emich, 1884; Kosztol�anyi et al., 2015; Wilson,
1971). Eggs are laid sequentially. After an egg is laid, the parents
gather leaves from near the burrow (i.e. an area of about 3.5 m2;
Frantsevich et al., 1977) that they bring back for the developing
larvae. After collecting enough leaves, they close the chamber and
start the next one. The decomposed leaf parts serve as the only food
source for the larvae until the next year, when they finally leave
their brood chambers. According to early studies (Emich, 1884;
Schreiner, 1906) there is a clear division of labour between the
sexes as males are responsible for collecting leaves, while females
use them to form food balls inside the brood chambers. However,
this division of duties, despite being frequently mentioned in the
literature (e.g. Arrow, 1951; Clutton-Brock, 1991; Trumbo, 1996;
Wilson, 1971), has been questioned in a recent study that reported
predominant female leaf-collecting behaviour in a Hungarian
L. apterus population (Kosztol�anyi et al., 2015). Further observa-
tions suggest that besides occasional leaf collection, males spend a
considerable amount of time inside the burrow to guard it against
intruders. This behaviour is also indicated by the presence of their
sexually dimorphic mandibular processes, also called tusks
(Wilson, 1971), which probably have a role in resolving intrasexual
contests. Guarding males respond quickly when a rival ap-
proaches the burrow (Frantsevich et al., 1977). These intrusions
occur frequently and fighting males can be seen almost every-
where during the breeding season. These fights can last for up to
15e30 min. Still, the effects of guarding on offspring survival are
poorly known. Infanticide by intruders has been reported in
various beetle species, for example the roundneck sexton beetle,
Nicrophorus orbicollis (Scott, 1990) or the patent-leather beetle,
Odontotaenius disjunctus (King & Fashing, 2007). However, there is
no evidence for such behaviour in L. apterus. Presumably the
function of burrow guarding in this species is to guard against
extrapair copulations by females and to ensure paternity. This
explanation is reasonable, since mating has very rarely been
observed outside the burrows and there are ample opportu-
nities for sperm competition as females lay eggs consecutively
throughout the breeding season.

In this study, we investigated the effects of ASR and density of
individuals on nest attendance (the time spent inside the burrow),
parental provisioning (frequency of leaf collection) and repro-
ductive success (number and quality of offspring) in L. apterus
under seminatural conditions. According to our hypotheses, under
a high level of intrasexual competition among males (i.e. under
male-biased ASR or high population density), males should spend
more time on mate guarding or copulate more frequently with
their social partner because of the higher risk of extrapair copu-
lations or the more frequent, time-consuming encounters with
rivals. In this case, we predict an increase in the total time pairs
spend inside the burrow where mate guarding and presumably
also copulations take place. If females do not compensate perfectly
for the lower investment of their mate (Harrison, Barta, Cuthill, &
Szekely, 2009), then we also expect a reduction in leaf collection
and fewer or smaller offspring. Otherwise, when ASR is female-
biased, males are predicted to care more as a result of their
higher confidence in paternity and/or the less time they spend
fighting with intruders.
METHODS

Fieldwork

The field study was conducted near Dorogh�aza village, situated
in the M�atra Mountains (47�5902900N, 19�5303600E) in northern
Hungary. The study area was located on a sloping grazed grassland,
which is inhabited by a large population of L. apterus. The experi-
ment was carried out during the brief active period of the species
between 23 April and 7 June 2014.
Experimental Design

To manipulate ASR and individual density, we established en-
closures by fencing off plots of size 2� 1 m, using plastic flower bed
edges. The fences were approximately 0.15 m high, which was
enough to keep these flightless beetles inside. Individuals were
wild-caught after emergence, individually marked with a paint
marker (Edding 751, Edding International GmbH or Uni-ball PX-21,
Mitsubishi Pencil Co. Ltd.), and randomly assigned to one of the
nine possible experimental treatments created by the full factorial
combination of three ASR levels (proportion of males: 0.25, 0.5,
0.75) and three density levels (4, 8, 12 individuals). We had three
replicates of each treatment combination totalling 27 plots con-
taining 216 individuals. To ease the monitoring of the individuals'
behaviour (see below), plots in the field were arranged in groups of
four (six groups) or three (one group). The group of plots were
located 225 ± 26.7 (mean ± SE) m apart and plots within a group
always received different treatments.
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Behavioural Data

Plots within a group were observed on the same day, and groups
were observed on consecutive days to collect data from each group
at approximately the same time of the breeding season. Six groups
were observed four times and one group only three times due to
the abrupt end of the breeding season (marked bywhen individuals
dig themselves deeper and stay underground until next spring).
Above-ground activity in a plot was recorded using a webcam
(Logitech C920) fixed on a purpose-built tripod above the plot. Two
webcams were connected to a netbook computer (Acer Aspire V5)
at a time, and a 2304 � 1296 pixels video was recorded at 1 fps
frame rate. We used two netbooks simultaneously; hence we could
record all four plots in a group at the same time. The netbooks were
powered by a 12 V leisure battery (Banner Energy Bull 956) con-
nected to a DC-AC inverter (e-ast CL300-12). We recorded the
behaviour of the individuals for 8 h, between 1000 and 1800 hours
on each recording day to be able to check whether the manipula-
tions influenced the daily activity patterns of the beetles (see
below). These recoding hours coincidewith themain above-ground
activity time of the species during the breeding season. Recordings
were sometimes paused or postponed in rainy weather conditions
and the total daily recording times of the plots were 7.26 ± 0.14 h
(mean ± SE).

Video footage was analysed using the ‘mwrap’ video event
recorder software (B�an, F€oldv�ari, Babits, & Barta, 2017). We
recorded (1) time spent outside the burrow and (2) successful leaf-
collecting events (defined as the moment when the individual
brought a leaf inside the burrow). Individuals often spent a
considerable amount of time walking along the wall, which may
not be related to leaf collecting or mate-searching behaviour, but
rather a thigmotactic tendency well known in many taxa
(Blokland, Geraerts,& Been, 2004; Schütz&Dürr, 2011). Therefore,
the time spent by the wall was excluded from the total observation
time. Since individuals and sexes were often indistinguishable on
the recordings, we recorded only the total activity for each plot.
Videos were analysed by three observers. The results were not
influenced by the identity of the observer, as adding observer
(factor with three levels) as a random factor to the final statistical
models (see below) did not significantly increase the model fits (all
P � 0.400).

At the end of the breeding season we marked all burrows (i.e.
nests) inside each experimental unit with a nail, to permit their
later localization using a metal detector (Silver Star 3; F. Chrenk�o,
Szigetszentmikl�os, Hungary). Then, between 2 and 25 September
2014, by which time larvae had become adults, we dug out all the
marked nests to determine reproductive success. The number of
offspring (both alive and dead) was recorded as well as offspring
sex (based on the presence or absence of mandibular tusks). We
measured weight to the nearest 0.01 g with a digital balance, and
measured thorax width and tusk length to the nearest 0.1 mmwith
a calliper.

Statistical Analyses

All statistical analyses were performed in the R statistical
environment (v. 3.3.2; R Development Core Team 2016). Since data
were collected from each plot at approximately the same stage of
the breeding period and same hours of the day, data for the 3 or 4
days (see above) were averaged for each plot. Behavioural variables
were calculated for 8 h (for shorter recordings in adverse weather
data were estimated for 8 h) and divided by the number of in-
dividuals in the plot. We had two behavioural response variables.
Duration of time spent inside the burrow (nest attendance) was
calculated as the difference between the total active time (obser-
vation time minus time spent at the wall, see above) and the time
spent outside the burrow. Frequency of parental provisioning was
the observed number of leaf-collecting events during a day. The
number of offspring was calculated as the number of offspring per
female in the plot.

The behaviour of individuals within the plots may be influ-
enced by the geographical positioning of the seven groups of
plots in the field (e.g. different vegetation cover can influence
time needed to collect suitable leaves for the food balls); there-
fore, linear mixed models (LMM) were used in the analyses from
the lme4 package (v. 1.1e12; Bates et al., 2016) with group ID as a
random effect. The behavioural response variables were natural
log transformed to ensure the normality and homoscedasticity of
residuals. Explanatory variables were sex ratio (fixed factor with
three levels), density (fixed factor with three levels) and their
interaction. Reported results are from likelihood ratio tests (LRTs)
from model comparisons. Hour of the day was not used as an
explanatory variable in the final analyses because the interaction
between density, sex ratio and hour of the day was not significant
in any of the behavioural response variables tested, i.e. the ma-
nipulations did not influence the daily activity pattern of the
individuals (LMMs with plot ID within group ID random struc-
ture, LRTs for the three-way interaction, all P � 0.174; Appendix
Fig. A1).

Offspring number and sizes (offspring weight, thorax width,
tusk length averaged for each plot) were analysed using LMMs
with the same random structure and explanatory variables as the
behavioural variables. To ensure the normal distribution of the
model residuals, offspring number was natural log transformed
in the analyses. For offspring sex ratio, a generalized linear
mixed-effect model (GLMER) was used with binomial error
structure.

Nonsignificant interaction terms (LRTs, all P � 0.065) are not
reported in the results and were removed from the models before
testing the main effects. For the number of offspring, the signifi-
cant density)ASR interaction was further investigated by con-
trasting the male-biased treatment with the other two sex ratios
(contrast: �1, �1, 2 for ASR 0.25, 0.5, 0.75, respectively) within
each density treatment separately using general linear hypotheses
tests (GLHT) from the multcomp package (v. 1.4e6; Hothorn et al.,
2016).

Ethical Note

Lethrus apterus has been protected by Hungarian law since 2012
and this research was permitted by the Middle-Danube-Valley
Inspectorate for Environmental Protection, Nature Conservation
and Water Management (approval number: KTVF: 5866-4/2013).
The study was designed to minimize the number of individuals
used in the experiment and all animals were handled carefully
without removing them from their natural habitat.

RESULTS

Behaviour

The duration of nest attendance increased significantly with the
increasing proportion of males (LRT: c2

2 ¼ 12.111 P < 0.001; Fig. 1a)
and with the density of the individuals (c2

2 ¼ 6.866, P ¼ 0.032).
Parental provisioning (leaf collecting) tended to decrease with

the increasing proportion of males (c2
2 ¼ 5.591, P ¼ 0.061; Fig. 1b);

however, the effect of density (c2
2 ¼ 2.432, P ¼ 0.296) was not

significant.
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Reproductive Success

In total 72 offspring were counted in the 27 plots, including alive
(70) and dead offspring (2). On average, 2.67 offspring per plot were
produced (range 0e13). Nine plots contained no offspring, with
seven of them belonging to the male-biased ASR treatment (78% of
the plots with this treatment), one to the female-biased (11%) and
one to the even ASR treatment (11%).

For offspring number, the interaction between ASR and density
was significant (c2

4 ¼ 10.307, P ¼ 0.036; Fig. 1c). The number of
offspring tended to be lower at the male-biased ASR at the low
density (GLHT contrast: �1, �1, 2 for ASR 0.25, 0.5 and 0.75,
Z ¼ �2.351, P ¼ 0.055) and at the high density (Z ¼ �2.885,
P ¼ 0.012), while there was no significant difference at the mod-
erate density (Z ¼ �0.031, P ¼ 1.000).

Of the 72 juveniles, 37 were female and 35 were male. Neither
density nor ASR influenced offspring sex ratio in the plots (density:
c2
2 ¼ 1.332, P ¼ 0.514; ASR: c2

2 ¼ 2.007, P ¼ 0.367). Adult sex ratio,
density of individuals or their interaction did not have any effect on
offspringweight, thorax width or, in the case of male offspring, tusk
size (N ¼ 34 male and 33 female offspring; LRTs: all P � 0.164).

DISCUSSION

In this study, we investigated how ASR and individual density
affect parental behaviour and reproductive success in a biparental
insect species. Our results support the predictions of the paternity
assurance hypothesis: as the sex ratio became more male-biased,
individuals spent more time inside their tunnels. Nest atten-
dance also increased with individual density. The resulting decline
of the above-ground activity in the male-biased groups was
mirrored in the reduced number of leaf-collecting events and of
offspring; however, the latter was only significant at low and high
densities. Offspring size and sex ratio were not affected by the
treatments.

Studies have shown that when ASR is male-biased, nests are
more exposed to threats by intruders; therefore, males are ex-
pected to spend more time on mate guarding or copulate more
frequently with their mate, to avoid extrapair copulations and to
ensure paternity (Takeshita & Henmi, 2010; Wada, Tanaka, &
Goshima, 1999). Our results indicate that guarding under intense
maleemale competition is, in some cases, inversely related to
brood size. This can be explained by the reduced time parents spent
on food collection. Mate guarding or multiple mating are both time
consuming; hence food collection might be traded off against these
activities. It is also possible that females are able to adjust the
number of offspring to the level of paternal care or at least to the
amount of resources provided by the parents. For example, females
might not start a new brood chamber until they have provided
enough food for the current offspring. This could also explain why
we did not find any effects of the treatments on offspring size.
However, missing effects could also have been caused by the low
number of offspring (only three) in the male-biased plots, where
we expected the largest effect on offspring size. These results are in
good agreement with other studies that have shown a conflict
between the parents over paternity and offspring number or
Figure 1. The effects of density and adult sex ratio (ASR) treatments on (a) nest
attendance (the duration of time individuals spent inside their burrows), (b) parental
provisioning (the frequency of successful leaf-collecting events), and (c) the number of
offspring per female (predicted values and standard errors were calculated based on
the fixed-effects of the LMMs containing the ASR)Density interaction, see Methods).
The proportions of males were 0.25 (upward-pointing triangles), 0.5 (diamonds) or
0.75 (downward-pointing triangles). Symbols in the same shade belong to the same
density treatment.
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quality (Hopwood, Moore, Tregenza, & Royle, 2015; Jormalainen,
Merilaita, & Riihim€aki, 2001; Takeshita, Lombardo, Wada, &
Henmi, 2011; but see Rodríguez-Mu~noz, Bretman, & Tregenza,
2011). Note, however, that at present we are unable to exclude
that guarding by males can be successful also against brood para-
sites and predators and more experiments are needed to fully un-
derstand the role of the males.

Our findings contrast with many studies which suggest more
intense male parental care under strong intrasexual competition
due to the limited number of mating opportunities (Balshine-Earn
& Earn, 1998; Burley & Calkins, 1999; Kokko & Jennions, 2008,
2012; Liker, Freckleton, & Sz�ekely, 2013; but see ; Fromhage &
Jennions, 2016). Many of these studies, however, focused on bird
model systems where parental care usually starts after the end of
sperm competition, and there is little work on insects with more
diverse reproductive systems (Hunt&House, 2011). For example, in
species like L. apterus, where the risk of extrapair copulations ex-
tends until the end of parental care, an increased amount of care
may not be beneficial under strong competition and, rather, males
should invest more in ensuring paternity.

One weakness of our study is that males and females were
indistinguishable on the recordings and we have no data about the
different activity patterns of the sexes. It is possible, for example,
that females can compensate for low paternal effort by providing
more care. However, compensation in biparental species is ex-
pected to be only partial because otherwise the biparental system
would not be evolutionarily stable (McNamara, Houston, Barta, &
Osorno, 2003; Simmons & Ridsdill-Smith, 2011; Trumbo, 2012).
Thus, female compensation typically reduces, but does not elimi-
nate, the effect of ASR on paternal care. Therefore, our study should
be interpreted as a conservative estimate of the manipulation of
paternal investment. Also note that with the current data we
cannot investigate whether decreased leaf collectionwas caused by
higher competition between the males or by fewer offspring
needing leaves. However, since pairs collect leaves for one offspring
at a time, the total number of offspring does not necessarily affect
provisioning effort on a given day of observation. The high per-
centage of plots without offspring under male-biased ASR may also
influence our results as we have no information about the under-
ground behaviour of the beetles without offspring. Furthermore,
we assumed that nest attendance indicates paternity assurance,
although some forms of parental behaviour (e.g. digging and
forming food balls) also take place underground. However, ac-
cording to our results individuals that spent more time inside also
collected fewer leaves and produced fewer offspring. Therefore, the
observed increase in nest attendance under high intrasexual
competition is best explained by increased mate guarding and not
bymore parental care. Additionally, staying inside the tunnel might
also be important in predator avoidance; however, we did not
observe predation of adults. Another limitation of our study is that
the fenced areas provided a seminatural environment and thewalls
of the plots distracted many individuals as they were often engaged
in wall-following behaviour. Since all plots were under similar
conditions and because time spent at the wall was excluded from
the total observation time, however, this may not severely bias our
results. We believe that our study has a great advantage over lab-
oratory experiments for being conducted in the natural habitat of
the individuals. Finally, we cannot exclude the possibility of any
successful take-over attempts by rivals during the experiment (we
know that mate changes can occur in natural populations, A.
Kosztol�anyi, personal observation). According to residenteintruder
game theory models (Maynard Smith, 1982), owners are expected
to win most of the encounters, but the fenced environment may
increase the aggressiveness of lower quality males as they have
little to lose. This increased ‘desperado effect’ (Grafen, 1987) can
give an alternative explanation of our results as it might be higher
in male-biased groups, and it can alter the observed residents'
behaviour by lowering their motivation in provisioning the
offspring of an already mated female.

To sum up, our study gives a new example of the importance of
ASR and individual density in reproductive biology. We showed
that under high levels of intrasexual competition among males,
individuals stayed in their burrowsmore, resulting in a reduction in
parental investment and brood size in L. apterus, as expected from
the paternity assurance hypothesis. We also found a significant
interaction between sex ratio and density with respect to offspring
number, implying a more complex relationship between ASR and
density. In most biparental insect species the main role of themales
is the protection of the nest (Suzuki, 2013). However, we suggest
that the presence of males in the nest should be interpreted more
carefully, and more work is needed to separate a biparental social
condition (‘the presence of two potential parents’; Parker et al.,
2015) from biparental care.
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Figure A1. Hourly pattern of behaviour during the observation time: model-predicted values and standard errors of (a) nest attendance (time spent inside the burrow) and (b)
parental provisioning (frequency of leaf-collecting events) in all nine treatment combinations of adult sex ratio (ASR) and density.
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Figure A1. (continued).
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