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Sexual size dimorphism (SSD) among adults is commonly observed in animals and is
considered to be adaptive. However, the ontogenic emergence of SSD, i.e. the timing of
divergence in body size between males and females, has only recently received attention.
It is widely acknowledged that the ontogeny of SSD may differ between species, but it
remains unclear how variable the ontogeny of SSD is within species. Kentish Plovers
Charadrius alexandrinus and Snowy Plovers C. nivosus are closely related wader species
that exhibit similar, moderate (c. 4%), male-biased adult SSD. To assess when SSD
emerges we recorded tarsus length variation among 759 offspring in four populations of
these species. Tarsus length of chicks was measured on the day of hatching and up to
three times on recapture before fledging. In one population (Mexico, Snowy Plovers),
males and females differed in size from the day of hatching, whereas growth rates dif-
fered between the sexes in two populations (Turkey and United Arab Emirates, both
Kentish Plovers). In contrast, a fourth population (Cape Verde, Kentish Plovers) showed
no significant SSD in juveniles. Our results suggest that adult SSD can emerge at differ-
ent stages of development (prenatal, postnatal and post-juvenile) in different populations
of the same species. We discuss the proximate mechanisms that may underlie these
developmental differences.

Keywords: Charadriiformes, development, growth, ontogeny, sexual size dimorphism, tarsus,
waders.

Sex differences in the body size of males and
females are prevalent across the animal kingdom
and their adaptive significance has been under
investigation for over a century (Darwin 1871).
Across taxa, the evolution of sexual size dimor-
phism (SSD) has been associated both with sexual
selection for larger male body size (Sz�ekely et al.
2000, Bertin & C�ezilly 2003, Lislevand et al. 2009)
and with natural selection for larger female body
size linked to increased fecundity (Blanckenhorn

2000, Blondel et al. 2002, Fairbairn 2007). How-
ever, among birds, body size is not always strongly
related to fecundity (Serrano-Meneses & Sz�ekely
2006, Lislevand et al. 2009) and the magnitude of
SSD varies across bird species. To fully understand
the evolution of SSD in birds, it is necessary to
determine both how and when SSD develops
among individuals at the proximate level (Price
1984).

Despite numerous studies focusing on patterns of
adult SSD, research has only recently focused on
the ontogenic development of SSD (Badyaev et al.
2001a, Blanckenhorn et al. 2007, Dietrich-Bischoff
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et al. 2008, Hegyi et al. 2011, Klenov�sek & Kry�stu-
fek 2013). Identifying exactly when morphological
divergence between males and females starts to
develop is of central importance in determining the
underlying mechanisms (Cox & John-Alder 2007,
Stillwell et al. 2014). SSD may emerge during three
main stages: (i) prenatally, due to sex differences in
embryonic growth rates resulting either from intrin-
sic genetic differences (Godfrey & Farnsworth
1952, Sellier 2000) or from differences in maternal
investment in male and female embryos (M€uller
et al. 2012, Helle et al. 2013); (ii) postnatally, due
to sex differences in the rate or duration of growth
of offspring (Leigh & Shea 1995, Blanckenhorn
2005, Hasumi 2010, Zhang & Liu 2013), which
may be hormone-mediated (e.g. linked to differen-
tial testosterone and activity levels; Klukowski et al.
2004, Cox et al. 2009); or (iii) post fledging, due
either to sex differences in continued growth, or to
mortality differences between juvenile or adult
males and females in relation to body size (Badyaev
et al. 2001a, Kersten & Brenninkmeijer 2008).

Comparative studies have revealed that variation
in SSD often appears between closely related spe-
cies. Even within a single species, variation in the
extent of SSD can occur between different eco-
morphs (Blanckenhorn et al. 2006, Dunham et al.
2013, Laiolo et al. 2013). For example, Blondel
et al. (2002) found greater SSD in a mainland pop-
ulation of Blue Tits Cyanistes caeruleus than in an
island population, where environmental stress was
suggested to limit the size of the larger sex (males).
Ontogenic factors are important in generating such
population differences (Badyaev et al. 2001b).
However, it remains unclear whether population
differences in the ontogenic growth patterns of
males and females might occur in species where
adult SSD is consistent across populations.

Here, we investigate sex differences in body size
during development in four plover populations:
three populations of Kentish Plover Charadrius
alexandrinus (Fig. 1) and one population of Snowy
Plover Charadrius nivosus. The Snowy Plover and
Kentish Plover are phenotypically similar and were
long considered to be the same species (Hayman
et al. 1988). Snowy Plovers are on average smaller
than Kentish Plovers (tarsus length c. 25 and
29 mm, respectively; K€upper et al. 2009) but
adults in these four populations exhibit very simi-
lar, moderate, male-biased SSD (c. 1 mm, or 4%,
difference in tarsus length, K€upper et al. 2009,
T. Sz�ekely unpubl. data). Plover chicks are preco-

cial, leaving the nest scrape a few hours after
hatching, and feed for themselves throughout the
postnatal growth period (Warriner et al. 1986,
Sz�ekely & Williams 1994). In waders (notably plo-
vers and sandpipers), sexual selection appears to
play a major role in the evolution of sexual size
dimorphism and is associated with male display
behaviour during courtship (Sz�ekely et al. 2000,
2004). However, the proximate mechanisms
responsible for the emergence of SSD in this
group are still unclear.

We aim to assess when SSD develops ontogen-
tically among plovers (prenatally, postnatally or
post-fledging), and whether SSD emerges during
the same ontogenic period in different populations.
We use tarsus length as a proxy for structural body
size (Rising & Somers 1989, Senar & Pascual
1997), and compare hatchling size and growth up
to fledging age (25 days) for males and females in
each population.

METHODS

Data collection

We collected hatchling size and growth data from
four plover populations (Table 1). At Bah�ıa de
Ceuta, Mexico, we measured juvenile Snowy Plo-
vers from May to July 2006–2009. Kentish Plover
populations were investigated at Tuzla Lake, south-
ern Turkey, from April to July 1996–1999 and in
2004; at Al Wathba Wetland Reserve, United Arab
Emirates, between March and July 2005–2006;

Figure 1. A Kentish Plover Charadrius alexandrinus chick
attended by a parent. Photo: Su-Shyue Liao.

© 2015 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists’ Union.

Variation in SSD ontogeny 591

 1474919x, 2015, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ibi.12263 by U

niversity O
f D

ebrecen, W
iley O

nline L
ibrary on [08/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



and on Maio Island, Cape Verde, from September
to November 2008–2010.

We followed standard protocols (Sz�ekely et al.
2008) to search for nests by observation from a
mobile hide, from a car or on foot. We predicted
hatch dates based on the floating stage of eggs in
lukewarm water, and visited nests daily as the
expected hatch dates approached. On the day of
hatching, chicks were captured and marked with a
single metal ring, and in most cases (70%) with an
additional colour ring. The length of the right
tarsus (tarsometatarsal bone) was measured to the
nearest 0.1 mm. Structural measurements such as
bill or wing length were not available for all popu-
lations as field workers aimed to minimize han-
dling time for each chick and keep the stress for
families at a minimum.

Measurement errors (% ME) were estimated for
three of the four populations by comparison of
variation within and between individuals. Within-
individual differences were based on comparison
of right tarsus with left tarsus measurements using
the formula (Bailey & Byrnes 1990):

%ME ¼ ½s2within=ðs2among þ s2withinÞ� � 100

where s2within = MSwithin, and s2among = (MSamong –
MSwithin)/2. MSwithin and MSamong are the within-
individual and between-individual mean sum of
squares of a Model II ANOVA. Measurement
errors were estimated at 0.83% in Ceuta, 1.49% in
Tuzla and 0.38% in Al Wathba, indicating that
approximately 99% of the total variation was due

to differences in tarsus length between birds rather
than measurement error.

A droplet of blood (25 lL) was taken for
molecular sex-typing, by puncturing the leg vein
using a hypodermic needle (Oring et al. 1988).
Blood was stored in Eppendorf tubes containing
1 mL of Queen’s lysis buffer (Seutin et al. 1991).
In total, 103 chicks (29 Ceuta, 33 Tuzla, 18 Al
Wathba, 23 Maio) with known hatch date and age
were not captured on the day of hatching, but
were captured, measured and blood sampled sub-
sequently. These chicks were not included in the
hatchling size dataset but were included in growth
calculations. We monitored broods up to the age
of 25 days, as most chicks fledge at (or shortly
after) this point (Sz�ekely & Cuthill 1999). We
attempted to measure the tarsus length of chicks
multiple times prior to fledging; chicks were recap-
tured during opportunistic encounters in the field
and their tarsus length was recorded (Table 1).
Where any pair of parents produced multiple
broods within or between breeding seasons, we
included chicks from only one brood to avoid
pseudoreplication. The included brood was chosen
to be the one with most chicks at hatching, or the
first brood for which data were collected.

Molecular sex-typing

DNA was extracted from blood samples using an
ammonium acetate extraction method (Nicholls
et al. 2000, Richardson et al. 2001). For molecu-
lar sex-typing, two markers were amplified via

Table 1. Summary data and growth parameters for chicks sampled across four plover populations. Parameters of the linear tarsus
growth model (see text for details) are: (a) size at hatching (mm) and (b) growth rate (mm/day).

Species
Ceuta, Mexico Tuzla, Turkey Al Wathba, UAE Maio, Cape Verde
Snowy Plover Kentish Plover Kentish Plover Kentish Plover

Location 23°540N, 106°570W 36°420N, 35°030E 24°15.50N, 54°36.20E 15°0.90N, 23°120W
No. of chicks measured on day
of hatching, broods

262, 122 347, 144 70, 39 80, 51

Years of study 2006–2009 1996–1999, 2004 2005, 2006 2008–2010
No. of chicks measured between
1 and 25 days of age

126 115 33 41

Mean no. of captures per chick 2.2 2.3 2.0 1.6
Tarsus length (mm) at hatching*
Males 17.60 � 0.05 19.05 � 0.06 18.52 � 0.16 19.61 � 0.18
Females 17.35 � 0.05 18.92 � 0.05 18.09 � 0.17 19.47 � 0.14

Tarsus growth parameters
a 17.607 19.058 17.844 19.160
b 0.309 0.411 0.522 0.450

Fit of linear growth model: r2 0.830 0.870 0.873 0.812

UAE, United Arab Emirates. *Mean � se.

© 2015 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists’ Union.
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polymerase chain reaction (PCR): the first marker Z-
002B amplified homologous regions on the Z and
W chromosome that differed in size (Z-002B;
Dawson 2007) and the second marker was W-spe-
cific and hence amplified only in females (Calex-
31; K€upper et al. 2007). PCR-amplification was
conducted with a fluorescently labelled forward
primer and unlabelled reverse primer on a DNA
Engine Tetrad 2 Peltier Thermal Cycler under the
following conditions: 95 °C for 15 min, followed
by 35 cycles of 94 °C for 30 s, 56 °C for 90 s,
72 °C for 60 s, and a final extension of 60 °C for
30 min. PCR amplicons were visualized on an ABI
3730 automated DNA analyser. For the Z-002B
marker, the Z alleles did not differ in size (ZZ) so
all males were homozygous, whereas in females
(ZW) the Z and W alleles differed in size, appear-
ing heterozygous (two differing hemizygous ampli-
cons). PCR of Calex-31 amplified a W-
chromosome fragment in females, whereas in
males no product was amplified. Using two differ-
ent marker systems overcomes the problem of
mis-typing due to allelic dropout (Toouli et al.
2000) or Z polymorphism (Dawson et al. 2001,
Dos Remedios et al. 2010). Alleles were scored
using GENEMAPPER software version 4.1 (Applied
Biosystems, MA, USA).

Statistical analysis

Hatchling size
Because broods usually contained more than one
chick (modal clutch size is three in Kentish and
Snowy Plovers; Sz�ekely et al. 1994), we assessed
variation in hatchling size using linear mixed
models (LMMs) implemented in R version 3.0.2
(R Core Team 2013) using the package ‘lme4’
(version 1.0-5; Bates et al. 2013). Brood identity
was included as a random grouping structure to
analyse sex differences in tarsus length of chicks
on the day of hatching. We ran separate analyses
for each population, rather than a single cross-
population model, as our aim was to monitor
within-population SSD development across two
species that differed in body size (K€upper et al.
2009). We used standardized tarsus length (z-
values) as the response variable in LMMs for each
population separately to provide a comparable
measure of SSD across populations. Initial models
included chick sex (two-level factor), year (fixed
factor) and hatch date (fixed covariate) together
with their pairwise interactions. Because the timing

and length of the breeding season differed between
populations we also standardized hatch dates for
each population using z-values. Chick sex was
retained in all models. For all other terms we
applied stepwise model simplification, removing
non-significant terms one by one, until the ‘mini-
mum model’ with lowest Akaike information cri-
terion (AIC) value was reached for each
population. Likelihood ratio tests were then carried
out to estimate the significance of terms in the
minimum models.

Chick growth
Early-phase tarsus growth in plovers (aged
0–25 days) is well described by a linear equation
(Sz�ekely & Cuthill 1999):

T ¼ aþ ðb�DÞ

where T is tarsus length (in mm) at age D (in days),
and a and b are estimated parameters (size at hatch-
ing and daily growth rate respectively; Table 1).
Linear regression models were fitted for each popu-
lation separately, including all tarsus length mea-
surements of known-age chicks captured at least
once after the day of hatching (see Supporting
Information Fig. S1 for plots of fitted lines).

To analyse the deviation of each data point (tar-
sus measurement) from the fitted linear regression
models for chicks captured at any age (0–25 days
old) in each population, standardized residuals
were used as the response variable in LMMs, with
chick identity nested within brood identity as a
random grouping structure. Residuals were largely
consistent for individuals measured multiple times
independent of age (i.e. chicks remained larger or
smaller than average with age, in 69–81% of cases
in the four populations). In Ceuta, no chicks were
recaptured in 2008, and therefore this year was
excluded from the growth analyses for this popula-
tion. Initial models included chick sex, year (fixed
factors) and standardized hatch date (fixed covari-
ate). We also included pairwise interactions
between sex, year and hatch date and ran model
simplifications as for hatchling size. Likelihood
ratio tests were carried out to estimate the signifi-
cance of terms in the minimum models. In two
populations (Ceuta and Tuzla) several chicks took
part in experiments in which eggs or chicks
(shortly after hatching) were moved between nest-
ing pairs. Therefore we ran separate model sets
with either social or genetic brood ID as random

© 2015 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists’ Union.
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factors. As the two model sets gave qualitatively
the same results, we report only the results of
models with social brood ID.

Cross-population analyses
Sex differences in hatchling size and chick growth
were tested independently for each study popula-
tion (Methods above). However, the results of
independent tests may not be directly comparable
if datasets differ in sample size or if there is
additional structure caused by other explanatory
variables. Therefore, to statistically combine mea-
sures of effect for each independent test, to deter-
mine the presence and magnitude of an overall
effect, and to measure the degree of heterogeneity
in the data between locations, we implemented
meta-analytic methods in METAWIN version 2.0
(Rosenberg et al. 1999). The effect size estimates
for sex differences in the final model in each popu-
lation were calculated from likelihood ratio test
Chi-squared statistics using Fisher’s z-transforma-
tion. Negative values of Fisher’s z-transformation
represent a negative effect, positive values repre-
sent a positive effect, and a zero value represents
no effect. A cumulative effect size (grand mean)
weighted by sample sizes was then calculated to
represent the overall magnitude of the effect
across populations. Heterogeneity across sample
sets was estimated (QT values) to evaluate the
likelihood that variance among effect sizes was
greater than expected by sampling error. For both
hatchling tarsus length and tarsus growth models,
the ratio of the square root pooled variance to
mean study variance (hatching ratio = 0.00;
growth ratio = 0.81) indicated that cross-popula-
tion analyses were appropriate without the need
for further grouping.

RESULTS

Hatchling size

In Ceuta, male chicks had significantly larger tarsi
than females on the day of hatching (b =
0.263 � 0.099 (se); Table 2). In the other three
populations, no significant sex differences in hatch-
ling size were identified, although in all cases a
non-significant trend emerged for larger male than
female hatchlings (Fig. 2a). In Ceuta and Al
Wathba, the tarsus length of hatchlings varied over
time: in Ceuta, chicks hatching in 2008 had
shorter tarsi than those hatching in other years of
the study and in Al Wathba, tarsus length was
shorter among those hatching later in the season
(b = �0.631 � 0.120; Fig. 2a).

Meta-analytic results supported the existence of
population differences in SSD at hatching. For
Ceuta, the effect size for tarsus length exceeded
the grand mean (Zr = 0.164, var(Zr) = 0.004;
grand mean 0.095; Fig. 3) in contrast to the
relatively lower effect sizes of the other three
populations. Furthermore, no significant heteroge-
neity among datasets emerged (QT = 1.874, 3 df,
P = 0.599).

Chick growth

In Tuzla, male chicks grew faster than females
(b = 0.386 � 0.146; Table 2). In contrast, no sig-
nificant sex differences were identified in Ceuta,
Al Wathba or Maio, based on independent testing.
In Tuzla, chicks that hatched later in the season
grew faster than those hatching earlier on
(b = 0.192 � 0.089; Table 2) and there was also a
trend for faster growth among later chicks in Ceuta

Table 2. Tarsus length of plover chicks on the day of hatching and tarsus growth up to age 25 days. The significance of terms in
‘minimum’ linear mixed models was assessed by likelihood ratio tests.

Response Predictor

Ceuta, Mexico Tuzla, Turkey Al Wathba, UAE
Maio, Cape

Verde

v2 (df) P v2 (df) P v2 (df) P v2 (df) P

Hatchling tarsus length Sex 6.94 (1) 0.008* 1.06 (1) 0.304 0.33 (1) 0.568 0.37 (1) 0.544
Hatch date 21.07 (1) <0.001*
Year 12.59 (3) 0.006*

Tarsus growth residuals Sex 0.66 (1) 0.418 6.67 (1) 0.010* 1.67 (1) 0.196 0.09 (1) 0.768
Hatch date 4.26 (1) 0.039*
Year 9 hatch date 8.36 (2) 0.015*

UAE, United Arab Emirates. Values marked with * indicate significant effects (P ≤ 0.05).

© 2015 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists’ Union.
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in two of three study years (2006 and 2009;
year 9 hatch date interaction; Table 2, Fig. 2b).

After correcting for sample size, meta-analyses
indicated that the magnitude of the effect size in
Al Wathba (Zr = 0.159, var(Zr) = 0.016) was sim-
ilar to that of Tuzla (Zr = 0.159, var(Zr) = 0.004;
Fig. 3), suggesting a trend towards faster male than
female growth in both populations, in contrast to
Ceuta and Maio, where effect sizes were below
the grand mean (0.096). No significant heteroge-
neity among datasets emerged (QT = 3.027, 3 df,
P = 0.388), suggesting that the variance among
effect sizes was within the range expected due to
sampling error alone.

DISCUSSION

Our results suggest that despite very similar SSD
in adults (4%, K€upper et al. 2009, T. Sz�ekely un-
publ. data), the ontogeny of SSD differs among
populations in two closely related plover species
(Fig. 2). In Ceuta, male Snowy Plover chicks
were larger than females on the day of hatching,
but subsequent growth rates until fledging (age
25 days) did not differ between the sexes. This

suggests that SSD in the Ceuta population can
largely be attributed to prenatal development.
Conversely, in Tuzla, male and female Kentish
Plover hatchlings did not differ significantly in
size but male chicks grew faster than female
chicks up to fledging, suggesting that SSD in this
population developed largely postnatally. A simi-
lar effect was identified at Al Wathba (Kentish
Plover) in cross-population meta-analyses (though
non-significant based on LMMs). Lastly, in the
Maio Kentish Plover population, no significant
sex differences in body size were identified
among chicks at any stage, therefore the SSD
previously observed among the adults of this pop-
ulation is more likely to have emerged after fledg-
ing due to either sex differences in growth rate,
growth duration, or differential survival relative
to size.

Although minor differences in sampling were
present among populations, these sampling biases
cannot explain the observed results. Despite sam-
ple sizes being lower for two of the four popula-
tions (Al Wathba, Maio; Table 1), meta-analytic
comparison of effect sizes enabled the identifica-
tion of population differences in sex-bias, and no
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Figure 2. (a) Tarsus length on the day of hatching and (b) tarsus growth up to 25 days old for male and female chicks in four plover
populations. Points represent predicted values (with standard error) from the best supported models (see Table 2). Separate plots
are provided to visualize the effects of significant environmental variables: ‘year’, ‘hatch date’ and their interactions. Note that hatch
date was a continuous variable in the analyses; however, it has been converted to a binary variable (early, late) to visualize inter-
actions here. Males are represented by filled symbols, females by open symbols. Circles represent means for the entire season,
squares for the early season and triangles for the late season.
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significant heterogeneity emerged between data-
sets. Additionally, a larger proportion of recapture
measurements was available for younger than older
chicks (pre- rather than post-12.5 days); however,
the relative distribution of measurements by age
was similar across populations (mean age at cap-
ture: Ceuta 5 days, Tuzla 7 days, Al Wathba
6 days, Maio 4 days).

In contrast to previous studies (Badyaev et al.
2001b, Blondel et al. 2002, Blanckenhorn et al.
2006, Laiolo et al. 2013), very similar levels of SSD
were identified across populations of breeding adult
plovers, but our results suggest this SSD emerges at
different ontogenic stages in different populations.
We suggest that multiple proximate mechanisms
may therefore be involved, enabling divergence in
body size at different stages even within a single
species. Badyaev (2002) suggested that at any given
age, the level of SSD would depend on the relative
influence of age-specific genetic effects, environ-
mental effects, maternal effects and age-specific
epigenetic interactions. Whether SSD develops may
depend on sex-specific responses to the external
environment as well as responses to internal selec-
tion pressures, for example differences in the

functional coordination of developmental processes
(Gebhardt-Henrich & Richner 1998, Badyaev
2002, Klenov�sek & Kry�stufek 2013).

The three Kentish Plover populations studied
are genetically similar and distinct from the Snowy
Plovers (K€upper et al. 2009, 2012). Patterns of
SSD ontogeny were consistent with genetic differ-
ences, as meta-analyses suggested the two most
closely related populations, Tuzla and Al Wathba,
exhibited similar postnatal SSD development
between 0 and 25 days of age. Environmental dif-
ferences between populations may also affect sex-
specific development. Previous studies have
reported context-dependent SSD in relation to
environmental variation. For example, variation in
climate, food resources or parasite abundance can
influence patterns of growth differently for males
and females, leading to differences in the extent of
adult SSD in closely related populations (Richner
1989, Cooch et al. 1996, Sheldon et al. 1998,
Badyaev et al. 2001a, Blondel et al. 2002, Blanc-
kenhorn et al. 2006, Hegyi et al. 2011, Stillwell
et al. 2014). Whether sex differences emerge
prenatally, postnatally or after fledging may
depend on whether sex differences in growth are

Effect size (z−transform)

−0.2 −0.1 0 0.1 0.2 0.3 0.4

Ceuta

grand mean

Tuzla

Al Wathba

Maio

Effect size (z−transform)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
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grand mean

Tuzla

Al Wathba
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(a)

(b)

Figure 3. Mean effect sizes (Fisher’s z-transformation) with associated 95% confidence intervals for sex differences in (a) tarsus
length at hatching and (b) tarsus growth across four plover populations. The grand mean represents the overall magnitude of effects
across populations, weighted by sample sizes.
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more pronounced under detrimental or favourable
abiotic or biotic conditions.

Differences in ambient temperature have been
reported among the four study populations (Ceuta
34.07 � 8.46 °C; Tuzla 25.63 � 2.88 °C; Al
Wathba 35.22 � 9.17 °C; Maio 29.31 � 5.08 °C;
Vincze et al. 2013). However, these differences
are not consistent with the observed population
differences in development of SSD among plovers,
as Snowy Plovers from Ceuta and Kentish Plover
chicks from Al Wathba hatched at very similar
temperatures but showed different ontogenies for
SSD. Furthermore, although overall tarsus length
at hatching or tarsus growth varied significantly
with hatch date and/or year in three of the four
populations, no significant interactions emerged
between seasonal variables and the sex of off-
spring, suggesting that within-population environ-
mental variation influenced both sexes equally.

One environmental factor that may be corre-
lated with the observed population differences is
locality: Maio (where no sex differences were iden-
tified among offspring) is an island location (Cape
Verde, 625 km from mainland Africa), whereas
the other three populations are in mainland
regions. Offspring development in island popula-
tions is often slower than on the mainland
(Andrews 1976, Higuchi & Momose 1981). One
possibility is that males in Maio continue to grow
beyond 25 days, causing SSD to develop later on.
Our monitoring did not continue beyond 25 days
due to the difficulties of recapturing fledged
chicks. Although the tarsus length of fledglings
was approaching that of adults across study popu-
lations (K€upper et al. 2009; T. Sz�ekely unpubl.
data), to understand more fully how SSD develops
it would be necessary to recapture and monitor
growth of juvenile plovers beyond 25 days of age.

Alternatively, adult SSD may emerge through
sex-biased differences in migration patterns, dis-
persal or behavioural exclusion of larger or smaller
individuals (Stamps 1993, Watkins 1996, Haenel
& John-Alder 2002, Cox & John-Alder 2007). The
reported levels of SSD were based upon breeding
adults captured either on the nest or with chicks
(K€upper et al. 2009, T. Sz�ekely unpubl. data).
This may not provide a true representation of the
body size distribution for the entire population.
For example, it may be that smaller males do not
breed in some populations such as Maio, and SSD
may be reduced or absent in the population as a
whole.

The patterns of sex-biased offspring develop-
ment identified within this study may have implica-
tions for population-level evolutionary processes.
Sex-biases in body size can influence the relative
mortality rates of males and females, and among
bird species with only moderate SSD such as in plo-
vers, the larger sex usually has the survival advan-
tage (Bortolotti 1986, Oddie 2000, Hipkiss et al.
2002, R�aberg et al. 2005, Rowland et al. 2007).
Sex-biased mortality can lead to biased adult sex
ratios (ratio of males to females). There is increasing
theoretical and empirical evidence for a role of
adult sex ratio in the evolution of parental care and
mating systems (Sz�ekely et al. 1999, Kokko &
Jennions 2008, Jennions & Kokko 2010, Kosz-
tol�anyi et al. 2011, Liker et al. 2013). This is of
particular relevance among Kentish and Snowy Plo-
vers, as extremely high variation has been reported
in parental care strategies at the population level
(Kosztol�anyi et al. 2009, Arg€uelles-Tico 2011).

In summary, we present evidence that moderate
male-biased adult SSD may emerge at different
stages of development (prenatal or postnatal)
across closely related species and also across
genetically similar populations of the same species.
Further comparative cross-population studies are
needed to address how the ontogeny of SSD varies
in relation to particular environmental conditions,
and to determine the proximate mechanisms
involved in driving variation in SSD ontogeny
among populations.
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SUPPORTING INFORMATION

Additional Supporting Information may be found
in the online version of this article:

Figure S1. Tarsus length of chicks monitored
between hatching and fledging across four plover
populations.
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