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1  |  INTRODUC TION

Vertebrates exhibit an impressive diversity of reproductive modes, 
including variation in modes of parturition and nutrient provision 
to the developing offspring (Blackburn, 1999; Kupfer et al., 2016; 
Pyron & Burbrink 2013; Vági et al., 2019). In egg-laying (oviparous) 

species, the embryos develop mostly externally. This form of re-
production is common in chondrichthyes, teleosts, amphibians, 
reptiles, and birds. The offspring of live-bearing (viviparous) spe-
cies develop inside the mother until birth (Shine, 1995); this form 
of reproduction is dominant in mammals, but also occurs in some 
amphibians, squamates, bony fishes and sharks. In all oviparous and 
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Abstract
The ecological and life history drivers of the diversification of reproductive modes 
in early vertebrates are not fully understood. Sharks, rays and chimaeras (group 
Chondrichthyes) have an unusually diverse variety of reproductive modes and are 
thus an ideal group to test the factors driving the evolution of reproductive complex-
ity. Here, using 960 species representing all major Chondrichthyes taxa, we recon-
struct the evolution of their reproduction modes and investigate the ecological and 
life history predictors of reproduction. We show that the ancestral Chondrichthyes 
state was egg-laying and find multiple independent transitions between egg-laying 
and live-bearing via an intermediate state of yolk-only live-bearing. Using phyloge-
netically informed analysis, we also show that live-bearing species have larger body 
size and larger offspring than egg-laying species. In addition, live-bearing species are 
distributed over shallow to intermediate depths, while egg-layers are typically found 
in deeper waters. This suggests that live-bearing is more closely associated with pe-
lagic, rather than demersal habitats. Taken together, using a basal vertebrate group 
as a model, we demonstrat how reproductive mode co-evolves with environmental 
conditions and life-history traits.
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2  |    KATONA et al.

many viviparous species, the only maternal source of nutrition pro-
vided to the embryo is the yolk-sac. However, many other vivipa-
rous lineages have evolved alternative pathways of nutrition for the 
developing embryos, such as placental viviparity in mammals, and 
in sharks and rays (see below). Although transitions to live-bearing 
are considered a key innovation that led to a burst of diversifica-
tion in several vertebrate lineages (Helmstetter et al., 2016; Mank & 
Avise, 2006; Organ et al., 2009; Pyron & Burbrink, 2013), the fac-
tors influencing these transitions are not yet fully understood. 
Groups with diverse reproductive strategies are ideal for studying 
this question because of the larger number of transitions they un-
derwent, thus allowing for greater statistical power in matching 
ecological conditions to evolutionary changes (Blackburn,  2006; 
Buddle et al., 2019; Van Dyke et al., 2014).

In most vertebrate lineages, egg-laying is considered as the an-
cestral mode of reproduction (Blackburn, 1999; Kupfer et al., 2016; 
Mank & Avise, 2006; Pyron & Burbrink 2013). Eggs provide some 
protection for the developing embryo; however, they are vulner-
able to predation, dehydration and/or extreme temperatures. 
Retaining the eggs and carrying them in the oviduct (yolk-only 
viviparity) provides extra protection from predators and unpre-
dictable or even adverse environmental conditions like suboptimal 
temperatures (Shine, 1995; Tinkle & Gibbons, 1977). Therefore, the 
evolution of viviparity is often associated with harsh environments, 
such as high-latitude, high-altitude or extremely dry habitats 
(Lodé,  2012; Ma et al.,  2018; Shine,  2007). Mothers also benefit 
from live-bearing by avoiding the costly migration to environments 
that provide conditions necessary for the developing eggs (Motani, 
2005; Neill, 1964). On the other hand, viviparity also has a num-
ber of costs. First, it can slow down the reproductive cycle, as the 
mother cannot produce a new clutch until the current one is born 
(Shine,  1985a, 1985b; Stearns,  1989; Zera  & Harshman,  2001). 
Second, the limited space inside the mother results in a smaller 
number of offspring compared to oviparous species (Recknagel & 
Elmer,  2019). Finally, physically carrying the eggs or offspring 
inside her body can reduce the mobility of the mother, which is 
acutely disadvantageous when searching for resources or escaping 
from predators (Banet et al., 2016; Ghalambor et al., 2004).

Beyond the basic yolk-only viviparity, the evolution of additional 
offspring nourishment in viviparity is hypothesised to be associ-
ated with food availability (Trexler  & DeAngelis,  2003; Van Dyke 
et al., 2014); nonetheless, the drivers of its diversification are still 
contentious. At least three mechanisms of additional embryonic 
nourishment are known in vertebrates: oophagy, where the em-
bryo is supplied with additional eggs or embryos (Dopazo & Koren-
blum, 2000); histotrophy, where maternal secretions or hypertrophic 
maternal tissues provide food source (Goycoechea et al.,  1986; 
Guex  & Chen,  1986; Kupfer et al.,  2006), and placental viviparity, 
where nutrients are provided directly from the maternal blood-
stream (Wooding & Burton, 2008; Wourms, 1981). In vertebrates, 
all of these alternatives have evolved several times (Blackburn, 1999, 
Pollux et al.,  2009; Pyron  & Burbrink 2013). Nonetheless, the 

evolution of diverse reproductive modes is not yet fully understood. 
Comparative studies in groups where this full diversity is present is a 
promising avenue to further elucidate this question.

One such group is that of sharks, rays and chimaeras (hereafter, 
Chondrichthyes). This is one of the oldest radiations of vertebrates, 
originating from the early Silurian period, approximately 420 million 
years ago (Benton et al., 2009). It contains 1192 extant species (Stein 
et al., 2018), which are diverse in body shape, ecology and habitat 
(Hamlett, 2005). Chondrichthyes species also exhibit a striking di-
versity of reproductive modes, including (i) egg-laying, (ii) yolk-only 
viviparity without maternal input, (iii) oophagy, (iv) histrotrophy by 
uterine milk and (v) placental viviparity (Buddle et al., 2021; Castro 
et al., 2016; Musick & Ellis, 2005; Tomita et al., 2019). By contrast, 
in most vertebrate clades, the diversity of reproductive modes has 
been lost predominantly to either oviparity (e.g., in bony fish, am-
phibians, reptiles and birds), or to placental viviparity (in mammals). 
This makes the Chondrichthyes an ideal group to investigate the 
evolution of reproductive modes. Previous studies on this question 
yielded conflicting results about the number and direction of transi-
tions, as well as the ancestral reproductive mode in the group, which 
was inferred as either egg-laying or yolk-only live-bearing (Dulvy & 
Reynolds, 1997; Lund, 1980; Musick & Ellis, 2005). Furthermore, the 
association between reproductive modes and life-history has never 
been comprehensively explored in this group. Recent advances, 
such as new comprehensive phylogenies (Stein et al., 2018) and new 
statistical methods, now offer a unique opportunity to revisit these 
questions.

Here, we present the most comprehensive analysis to date 
of the evolutionary transitions of reproductive modes in sharks 
and rays. We have three key objectives. First, we aim to recon-
struct the ancestral state of the Chondrichthyes group by asking 
whether the advanced reproductive modes of live-bearing with 
maternal input evolved from egg-laying or from yolk-only viviparity 
(Blackburn,  1995; Dulvy  & Reynolds,  1997; Lund,  1980; Musick  & 
Ellis, 2005). We expect that, as placental viviparity requires complex 
anatomical adaptations, it most likely evolved from the intermediate 
state of yolk-only viviparity. Second, we aim to investigate whether 
reproductive modes are associated with life history. We hypothesize 
that viviparous species with maternal input have fewer and larger 
offspring than species with egg-laying and yolk-only viviparity (Pol-
lux et al.,  2009; Thibault & Schultz, 1978). Third, we also test the 
associations between reproductive modes and the environment. 
We predict that oviparous species are more likely to live in deeper 
waters and be bottom-dwellers because oviparous sharks and rays 
have benthic eggs and are thus tied to seafloor oviposition sites. 
By contrast, viviparous species can live closer to the surface and 
in open water habitats throughout their life cycles (Rigby & Simp-
fendorfer,  2013; Wourms,  1993). We also investigated the ances-
tral Chondrichthyes habitat, predicting that the oviparous ancestors 
lived on the seafloor, and viviparous species were more capable of 
colonizing pelagic habitats (Compagno, 1990; Mull et al., 2019; So-
renson et al., 2014).
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    |  3KATONA et al.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection

We collected data on reproductive modes from peer-reviewed jour-
nals and the Fishbase online database (Froese  & Pauly,  2021, see 
Table  S1). We classified the reproductive modes into five distinct 
categories. The assignment of egg-laying and placental viviparity 
was straightforward in all cases. If the mother secretes either ‘lipid’ 
or ‘limited’ uterine milk (Hamlett, 2005), we classified both of these 
categories as live-bearing with uterine milk. We classified species 
where the mother provides unfertilized eggs to the embryos to feed 
on as live-bearing with oophagy. Because adelphophagy (sibling can-
nibalism in the uterus) is considered to be a specific type of oophagy 
in the literature (Musick & Ellis, 2005) we merged this category with 
live-bearing with oophagy. When the embryos develop inside the 
mother and feed solely on yolk (also referred to as ovoviviparity), 
we classified these as yolk-only live-bearing. In some cases, the dif-
ference between uterine milk viviparity and yolk-only viviparity is 
hard to identify, especially in the dogfish sharks (group Squalomor-
phii) where yolk-only viviparity is the most widespread mode of re-
production. In some of these species, females may provide limited 
amounts of mucus to the embryos, but they develop mostly using 
the yolk (Hamlett, 2005; Musick & Ellis, 2005). Therefore, we classi-
fied them as yolk-only live-bearing.

For species with data on reproductive mode, we extracted 
life-history and environmental data from reference books (e.g 
Hamlett,  2005), peer-reviewed journals and Fishbase (Froese  & 
Pauly, 2021). Data on mean adult body size were collected from Pi-
miento et al.  (2019). We collected mean values from the literature 
for size and number of the offspring (see Data  S1). If minima and 
maxima were given for these quantities, we used their mean. We 
defined lifespan as the maximum lifespan of the species observed in 
the wild. In addition, to validate our life history data from Fishbase, 
for a subset of species we also collected data from the recently pub-
lished Sharkipedia (https://www.shark​ipedia.org/, Mull et al., 2022), 
and we investigated the consistency of the two sources.

We also extracted two types of environmental data from Fish-
base (Froese  & Pauly,  2021): (i) using the minimum and maximum 
water depth, we calculated the mean depth of each species and (ii) 
ascertained their habitat type (see Table S2).

2.2  |  Statistical analyses

We used a sample of 100 phylogenetic trees, downloaded from 
VertL​ife.org (https://vertl​ife.org/, Stein et al.,  2018), a molecular-
based phylogeny database containing 1193 recognized species of 
sharks and rays. We mapped the ancestral states of both repro-
ductive mode and habitat using the ‘make.simmap’ function in the 
‘phytools’ package in R (R Core Team 2014; Revell, 2012). In ‘make.
simmap’, we used three different models using the 100 phylogenetic 

trees: the equal rates model (ER), where only equal transition rates 
are allowed between the character states; the symmetric model 
(SYM), where equal transition rates are allowed between the char-
acter states but rates can vary across different character pairs; and 
the all rates different model (ARD), where different transition rates 
are allowed between the states. The relative fit for each model was 
compared using the Akaike information criterion (AIC; Akaike 1973). 
We calculated the number of evolutionary transitions between re-
productive modes of the ancestral state reproduction model with 
the lowest AIC using the ‘make.simmap’ function. We counted the 
mean number of evolutionary transitions out of the 100 repeats, 
then we calculated the relative frequency of transitions as the num-
ber of transitions divided by the mean number of occurrences of the 
initial state.

In order to investigate the overall effect of reproductive mode 
on the response variables we carried out phylogenetic ANOVA. To 
investigate the associations of reproductive mode with life history 
and ecological variables, we fitted phylogenetic generalized least 
squares (PGLS) models using the package “caper” (Orme & Freckle-
ton, 2013). Bivariate models were used because the predictor vari-
ables showed a high level of correlation (pairwise correlation test, 
Table  S3). We tested six bivariate models in which reproductive 
mode was a categorical predictor (either egg-laying, yolk-only live-
bearing or live-bearing with maternal input, with egg-laying as the 
reference category), and the following response variables: (i) body 
length; (ii) life span; (iii) offspring size; (iv) offspring number; (v) water 
depth; and (vi) habitat type (see Table  1). We used reproductive 
mode as the predictor in the models because in PGLS the response 
variable must be a continuous variable. In all models, numerical life 
history variables were log-transformed and habitat type was treated 
as a numeric ordinal variable with possible values of 1 (demersal, 
i.e. bottom-living species which are generally more associated with 
a deepwater bottom-living lifestyle but which also includes species 
living at shallower depths, for instance in coral reefs), 2 (opportunis-
tic, i.e. species that move around, visiting both demersal, and open-
water habitats), or 3 (pelagic, i.e. open-water species, which live 
higher up in the water column). To test the robustness of our results, 
we also ran these models using two subsets of the data, randomly 
selected to contain 80% and 60% of the total data for each variable. 
We ran 100 repeats of each of the above models (see Tables S4 and 
S5, respectively).

3  |  RESULTS

3.1  |  Diversity of reproductive modes in sharks and 
rays

We found data on reproductive modes for 960 of the 1193 known 
extant species (Figure 1; Table S1; Figures S1 and S2). Two groups 
in particular show high diversity (Figure  S3): approximately half 
of skates and rays (Batoidea) are egg-laying, while the other half 
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4  |    KATONA et al.

are either yolk-only or uterine milk-producing live-bearing spe-
cies. In addition, most galeomorph sharks (Galeomorphii) are live-
bearing (yolk-only, placental or oophagy), with fewer species being 

egg-layers. In contrast, squalomorph sharks (Squalomorphii) and 
chimaeras (Holocephalimorpha) have invariable reproductive modes 
with yolk-only live-bearing and egg-laying, respectively.

TA B L E  1  Definitions of reproductive modes in sharks, rays and chimaeras.

Reproductive mode Definition

Egg-laying Offspring develops in a leathery egg case externally, nourishment is provided by the yolk sac, e.g., Hydrolagus colliei, 
Heterodontus francisci, Scyliorhinus canicula, Amblyraja hyperborea

Live bearing

Yolk-only viviparity Offspring develops inside the mother, nourishment is provided by the yolk sac, e.g., Mobula birostris, Rhincodon typus

Live-bearing with maternal input

Live-bearing with 
oophagy

Offspring develops inside the mother, nourishment is provided by the yolk sac, and after the yolk is fully absorbed 
embryos feed on unfertilised eggs, e.g., Alopias pelagicus, Isurus oxyrinchus, or the embryos cannibalize each other 
(adelphophagy), e.g., Carcharias taurus, Lamna nasus

Live-bearing with 
uterine milk

Offspring develops inside the mother, nourishment is provided by the yolk sac and ‘uterine milk’ secreted by the mother. 
This ‘milk’ could be of either ‘limited’ type, where embryos feed on uterine mucus, or ‘lipid’ type, where embryos 
feed on lipid and protein-rich substances, e.g., Carcharodon carcharias, Rhynchobatus australiae, Myliobatis australis

Live-bearing with 
placenta

Offspring develops inside the mother, nourishment is filtered from the circulatory system of the mother via a placental 
connection, e.g., Mustelus canis, Carcharhinus amblyrhynchos, Sphyrna mokarran

F I G U R E  1  Reproductive modes in sharks, rays and chimaeras based on 100 stochastic character mapping simulations using the equal 
rates model of ‘phytools’ (Revell, 2012). Pie charts indicate the likelihood of reproductive modes at a given node, and the central node 
represents the common ancestor of sharks, rays, and chimaeras. Species illustrations are from Last et al. (2016) and Ebert and Dano (2020).
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    |  5KATONA et al.

3.2  |  Ancestral state of reproductive modes

We inferred that the ancestral reproductive mode of both sharks 
and rays, and indeed the entire Chondrichthyes group is egg-
laying (Figure  1), consistent with Dulvy and Reynolds  (1997). 
Yolk-only live-bearing and live-bearing with uterine milk origi-
nated closer to the basal nodes, whereas oophagy and placen-
tal live-bearing emerged later. Live-bearing with maternal input 
is inferred to have evolved both from yolk-only live-bearing and 
directly from egg-laying (Figure 2). Furthermore, live-bearing with 
maternal input could have reverted to yolk-only live-bearing and 
the latter could have reverted further back to egg-laying in some 
species (Figure 2). Importantly, we did not infer any direct rever-
sal from live-bearing with maternal input to egg-laying (Figure 2). 
Only one direct transition was inferred between different forms 
of live-bearing with maternal input, when placental live-bearing 
transitioned to live-bearing with uterine milk in tiger sharks (Gale-
ocerdo cuvier, Carcharhinidae). The model with the best fit (lowest 
AIC) of ancestral state reconstruction was the equal rates model 
model (ER, AICc = 423.19), followed by the symmetric model (SYM, 
AICc = 423.42) and all rates different model (ARD, AICc = 465.37, 
Figures S4–S6).

3.3  |  Association between reproductive mode, life 
history and ecology

Body size, life span and offspring size are significantly associated 
with reproductive mode (Table 2). Specifically, egg-laying sharks 
and rays have significantly smaller bodies, shorter life spans and 
smaller offspring than species with yolk-only live-bearing. Live-
bearing species with maternal input have shorter life spans than 
species with yolk-only viviparity, and fewer but larger offspring 
than egg-laying species (Figure 3, Table 2; note that data on life 
span were sparser [N = 99 species] than other life-history vari-
ables). These associations between reproductive modes and body 
length, life span and offspring size remained consistent when the 
models were repeated with a random sample of both 80% and 
60% of species (Tables S4 and S5), underlining the robustness of 
the results.

Water depth and life-style show weak or non-significant 
associations with reproductive mode, respectively (Figure  4). 
Although live-bearing species tend to live closer to the water 
surface whereas egg-layers typically live deeper down (Table  2, 
Figure S7), these associations are no longer significant when re-
sampling with 80% or 60% of the data (Tables  S4 and S5). The 

F I G U R E  2  Evolutionary transitions between reproductive modes in sharks, rays and chimaeras based on 100 stochastic character 
mapping simulations using the equal rates model in ‘phytools’ (Revell, 2012). The numbers represent the calculated rate of transitions 
between each reproductive mode (the number of transitions divided by the number in each initial reproduction state). Illustrated species: 
egg laying: thornback ray (Raja clavata, Rajidae); yolk-only viviparity: ornate wobbegong (Orectolobus ornatus, Orectolobidae), viviparity with 
oophagy: tawny nurse shark (Nebrius ferrugineus, Ginglymostomatidae); viviparity with uterine milk: Xingu River ray (Potamotrygon leopoldi, 
Potamotrygonidae); placental viviparity: smooth hammerhead (Sphyrna zygaena, Sphyrnidae).
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6  |    KATONA et al.

ancestral species are inferred to live close to the bottom, whereas 
the colonization of open waters, coasts, and coral reefs occurred 
later (Figure  S8; equal rates model AICc = 1694.56, symmetric 
model AICc = 1999.33, all rates different model AICc = 2107.52; 
Figures S9 and S10).

Importantly, data from Sharkipedia and FishBase are highly cor-
related (Table S6). Thus, our results are robust to the database used.

4  |  DISCUSSION

4.1  |  Ancestral state and transitions among 
reproductive modes

To our knowledge, this is as yet the most comprehensive phyloge-
netic analysis of reproductive modes and their association with life 
history and environmental variables in a basal vertebrate group.

Our comprehensive phylogenetic analysis revealed three key re-
sults. First, our results support the overall finding of Dulvy and Reyn-
olds (1997) that egg-laying was the ancestral reproductive mode in 
Chondrichthyes, however we found two key differences. We show 
that egg-laying was the ancestral state of skates (Rajidae), in con-
trast to Dulvy and Reynolds (1997) who inferred live-bearing as the 
ancestral state in this group. In addition, our results suggest that in 
carpet sharks (Orectolobiformes), egg-laying did not revert from 
live-bearing. Differences between our results and those reported 

by Dulvy and Reynolds (1997) may be explained by our more com-
prehensive taxonomic coverage, higher data resolution due to using 
species-level data only, more sensitive statistical methods and up-
dated phylogenetic hypotheses.

Second, apart from the exclusively egg-laying group of ghost 
sharks and chimaeras, yolk-only viviparity evolved in all other 
major groups, while live-bearing with maternal input evolved in 
rays and in galeomorph sharks. We found that, in most cases, 
yolk-only live-bearing was an intermediate state from which 
all three types of live-bearing with maternal input could have 
evolved. However, despite the fact that live-bearing requires 
complex adaptations in anatomy, physiology and behaviour for 
longer retention of eggs, we did infer direct transitions between 
egg-laying and live-bearing with maternal input, where the 
yolk-only stage of live-bearing was apparently “skipped” in the 
galeomorph sharks. Although the latter result was unexpected, 
it is not unprecedented. In a study on anurans, Gomez-Mestre 
et al.  (2012) found that the intermediate stages in complex re-
productive modes are sometimes not detectable, which probably 
indicates that these existed for relatively short time intervals on 
an evolutionary time scale.

We classified mixed reproductive modes based on the domi-
nant component of nutrient provision (Hamlett,  2005; Musick  & 
Ellis, 2005), although these are transitional states between yolk-only 
live-bearing and some form of matrotrophy. Our results showed 
that the different forms of matrotrophy (uterine milk, oophagy 

TA B L E  2  Relationships between life history traits, environment and reproductive modes in Chondrichthyes.

Response variable F p λ Comparisons between reproductive modes β ± SE p

Body length (N = 397) 3.5 0.03 0.85 Egg-laying versus yolk-only viviparity 0.54 ± 0.20 0.008

Egg-laying versus maternal input viviparity 0.32 ± 0.23 0.16

Yolk-only viviparity versus maternal input viviparity −0.21 ± 0.16 0.17

Life span (N = 99) 3.01 0.05 0.0 Egg-laying versus yolk-only viviparity 0.53 ± 0.17 0.002

Egg-laying versus maternal input viviparity 0.24 ± 0.15 0.12

Yolk-only viviparity versus maternal input viviparity −0.29 ± 0.11 0.02

Offspring size (N = 241) 5.5 0.004 0.83 Egg-laying versus yolk-only viviparity 0.43 ± 0.16 0.01

Egg-laying versus maternal input viviparity 0.54 ± 0.18 0.003

Yolk-only viviparity versus maternal input viviparity 0.11 ± 0.10 0.28

Offspring number (N = 279) 1.22 0.29 0.8 Egg-laying versus yolk-only viviparity 0.29 ± 0.26 0.25

Egg-laying versus maternal input viviparity −0.07 ± 0.30 0.80

Yolk-only viviparity versus maternal input viviparity −0.37 ± 0.18 0.04

Water depth (N = 832) 0.64 0.05 0.86 Egg-laying versus yolk-only viviparity 0.58 ± 0.22 0.01

Egg-laying – maternal input viviparity 0.92 ± 0.27 0.009

Yolk-only viviparity – maternal input viviparity −0.07 ± 0.30 0.8

Life style (N = 958) 0.02 0.97 0.679 Egg-laying versus yolk-only viviparity 0.01 ± 0.11 0.88

Egg-laying versus maternal input viviparity −0.04 ± 0.14 0.97

Yolk-only viviparity versus maternal input viviparity −0.02 ± 0.1 0.83

Note: For phylogenetic ANOVA we provide the F value (F), and corresponding p-value. Categories are compared with phylogenetic generalized least 
squares (PGLS) using egg-laying or yolk-only live-bearing as reference category, and we provide parameter estimates with standard error (β ± SE), the 
corresponding p-value, and Pagel's lambda (λ). Life history variables were log10 transformed prior to the analyses. N refers to the number of species, 
and significant associations are in bold.
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and placenta) evolved independently, as alternative solutions for 
offspring provisioning. We identified only one transition between 
different forms of matrotrophy, when the tiger shark lost its pla-
centa and evolved uterine milk instead (Castro et al.,  2016; Swift 
et al., 2016). Thus, we still do not fully understand the causes of ma-
trotrophy within sharks and rays. As direct transitions between its 
forms were extremely rare, it is likely that ontogenetic or evolution-
ary constraints pushed certain chondrichthyan clades towards one 
form or another.

4.2  |  Life history, ecology and reproductive modes

Our third main finding is that live-bearing sharks and rays have larger 
offspring than egg-laying species, a common pattern across animals 
(Blackburn, 1999). Offspring can benefit from a large size at birth 
because they can enter the food web in a higher position. According 
to our results, matrotrophic species can excel at this. For example, 
sand-tiger shark (Carcharias taurus) offspring are born as powerful 

predators with a length of almost one meter, having cannibalized 
their siblings in utero (Blackburn,  2015). The survival of offspring 
may also differ between egg-layers and live-bearing species. Large 
offspring may reach maturity faster and survive better than small 
offspring that hatched from eggs (Wourms, 1993).

Our findings suggest that ancestral sharks were egg-layers and 
lived on or close to the seabed, and later species radiated out into 
open water habitats. As sharks and rays do not produce pelagic 
buoyant eggs, in contrast to bony fish (Craik  & Harwey,  2009; 
Wourms, 1993), live-bearing may have allowed different lineages 
of sharks and rays to colonize pelagic environments. Oviparous 
sharks and rays produce benthic egg cases, and presumably re-
taining these eggs was less costly than evolving specialized buoy-
ant eggs. Furthermore, carrying the embryos internally might be 
beneficial in pelagic habitats as the mothers are not tied to ovi-
position sites (Wourms, 1977; Wourms & Lombardi, 1992). Live-
bearing could also be advantageous in environments where there 
is a high density of individuals, or high diversity of species (e.g., 
coral reefs or coastal habitats where many live-bearing species 

F I G U R E  3  Reproductive mode versus life history traits in sharks, rays and chimaeras. (a) Adult body length (log10 m); (b) life span (log10 
years); (c) offspring size (log10 cm); (d) number of offspring (log10). Egg-laying refers to egg-laying species, lecitotrophy refers to yolk only 
viviparity, and matrotrophy refers to viviparity with maternal input. N refers to the number of species, and asterisk indicates a significant 
difference. For phylogenetically corrected statistical results, see Table 2. In each box plot, the thick middle line, box and whiskers represent 
the median, interquartile range and the minimum and maximum data range, respectively, and the circles represent outlier data points.
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form nurseries), or both (Blackburn,  1999), and the survival of 
larger offspring can be higher in pelagic habitats lacking shelter for 
offspring from predators. Considering the energetic costs of re-
production, live-bearing could be more adaptive in environments 
where food availability is not constant, as females can control the 
flow of the nutrients and even reabsorb the embryos if there is 
not enough food (Buddle et al., 2019). In contrast, egg-laying spe-
cies must produce all of the nutrients for the offspring in advance; 
thus, those resources are lost to the females.

The diversity of reproductive modes was decimated through-
out the vertebrate phylogeny. In Chondrichthyes, we have seen 
that there are five distinct modes of reproduction. By contrast, in 
most other vertebrates there are two: they are predominantly ei-
ther oviparous or have placental viviparity, with a few species being 
ovoviviparous. In their distant evolutionary past, spreading to new 
habitats, such as when moving to land from the oceans, boosted 
the evolution of diverse reproductive modes (Vági et al.,  2022). 
However, once these new habitats were settled, efficient solu-
tions for reproduction such as amniotic eggs or placental viviparity 
might have been favoured and canalized in successful vertebrate 
clades, thus reducing this temporarily broader repertoire of re-
productive modes. Body temperature regulation could also have 
played a key role in the evolution of reproductive modes: for in-
stance, viviparity, common among mammals, could have arisen 
in conjunction with them evolving endothermy (Balshine,  2012; 
Reynolds et al., 2002).

One main limitation of our study is that we may have missed 
important ecological associations due to the relatively coarse cat-
egorisation of habitats. Although we showed here the coevolution 
of reproductive modes and habitats, future studies are needed to 
investigate causation: whether habitat changes induced transi-
tions between reproductive mode, or if it is the transitions that en-
abled sharks and rays to colonize new habitats (Compagno, 1990; 
Mull et al., 2019; Sorenson et al., 2014). Environmental conditions 

have already been shown to affect the evolution of reproductive 
modes in other vertebrates, e.g., squamate reptiles, anuran and 
urodelan amphibians (Recknagel et al.,  2021; Vági et al.,  2020, 
2022). It would be interesting to investigate if the emergence of 
live-bearing and matrotrophy were also associated with paleocli-
matic changes. This would allow us to extrapolate the effects of 
current oceanic climate change on species with various reproduc-
tive strategies, an important question in the current context of 
rapid, human-induced climate change. Finally, since data on life 
history is still missing for many species, future studies with an 
even broader taxonomic coverage and/or higher resolution data 
may uncover additional associations between life history and re-
productive modes.

In conclusion, our comprehensive analysis found that in Chon-
drichthyes different modes of live-bearing with maternal input 
evolved independently, mostly from an intermediate state of yolk-
only viviparity, but also with rapid changes directly from egg-laying. 
Reproductive mode was also associated with life-history variables 
including body size, longevity and offspring size. Furthermore, our 
analysis consistently suggested that live-bearing in ancestral sharks 
and rays played an important role in their successful radiation into 
pelagic habitats, transforming several species into the charismatic 
keystone species and apex predators we know today.
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