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Simple Summary: In response to the harsh natural environment in the arid lands of Xinjiang, China,
Kentish plover Charadrius alexandrinus populations in different regions show flexibility in their
breeding strategies to cope with the changeable environment. Of our three study areas, one (Taitema
Lake) is distinctly characterized by barren terrains and a harsh climate. Here, compared with the
two other study areas, the tarsometatarsi of the female plovers were shorter but their egg size and
clutch volume were significantly larger than in the two other populations. With the postponement of
laying dates, partly due to phenological differences, the two other populations, respectively, show
the characteristics of a small clutch size and a relatively small egg size and a decrease in reproductive
output. In summary, our data support the hypothesis that Kentish plover populations show flexibility
in their breeding strategies to cope with the harsh natural environment in the arid lands of Xinjiang,
China. The relatively high average clutch size and average egg size observed in the study area
also show that the saline wetlands in Western China are an important breeding habitat for Kentish
plover. Therefore, in addition to the limitation of the birth cloaca, the explanation of the egg length
allometry may be related to other factors, such as nest size, structure, shape, climate, and brood
desertion, etc. Future research will be recommended to further clarify the underlying mechanism
of the species’ reproductive strategies in response to regional environmental modification resulting
from anthropogenic landscape features (human activities) and global climate change.

Abstract: Due to the influence of bio-geographical and environmental factors, as well as anthro-
pogenic landscape features, organisms show different reproductive strategies among different popula-
tions. There is a lack of detailed information on the reproductive biology of Kentish plover Charadrius
alexandrinus in arid lands in Central Asia. In this study, we summarized the characteristics of the
reproductive biology of three geographically distinct plover populations in Aibi Lake in northwestern
Xinjiang, Taitema Lake in southern Xinjiang and artificial reservoirs around Urumqi City in northern
Xinjiang, based on 440 eggs from 158 nests observed and analyzed from April to July of 2019 and
2020. We found that there was no significant difference in clutch size among the three populations.
However, the egg size of the Taitema Lake population was significantly larger than those of the other
two populations, whilst the egg volume and clutch volume of the artificial reservoirs’ populations
were significantly larger than that of Aibi Lake. With the postponement of laying dates, the northern
and northwestern populations showed the characteristics of a small clutch size and a relatively small
egg size, respectively, and a decrease in reproductive output. The heavier female plovers in Taitema
Lake laid eggs earlier, and there was a significantly positive correlation between female body mass
and clutch size and egg size. The tarsometatarsus length of the female plovers was significantly posi-
tively correlated with the reproductive output in all three populations. The model selection results
show that female body size and ambient temperature restrict the egg size and reproductive output of
Kentish plovers, which is consistent with the upper limit hypothesis of the maternal condition and
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maternal constraint. Our data support the hypothesis that Kentish plovers show distinct flexibility in
their breeding strategies to cope with the harsh natural environment in the arid lands of Xinjiang,
China. The results of a relatively high average clutch size and average egg size imply that the saline
wetlands of Western China are important breeding habitats for Kentish plovers.

Keywords: Kentish plover; life history; reproductive output; breeding behavior; inland arid area

1. Introduction

Reproductive life history represents the overall trade-off between the investment in
eggs and clutch and the timing of reproduction, important events in the reproductive
process of biological organisms, with a particular focus on the mechanism of why different
species in the same environment or the same species in different environments may develop
different reproductive strategies [1–11]. Reproduction, the content of greatest concern to
ornithologists, is the fundamental process for life history, and reproductive strategy is
the decisive factor that affects the fitness of animals, directly through individual survival
and reproduction, population dynamics, and persistence [3,10,12–16]. A large number of
studies have described the diversity of reproductive life history strategies among birds
due to variations in environmental conditions and individual morphology [16–28]. Ad-
ditionally, the body size and the reproductive characteristics in populations of the same
species are also influenced by environmental and phylogenetic factors [19,22,29]. The
reproductive life history characteristics of birds, such as egg-laying time, egg size, clutch
size, and clutch volume, are usually considered to be the main indicators to measure re-
productive output [10,17,19,22,27–30]. These indicators can effectively reveal the different
reproductive traits of birds in different environments due to adaptive trade-offs and con-
straint of physiological mechanisms, which can be interpreted as different reproductive life
history strategies [17,19,22,27–31]. For example, the egg size and clutch size of birds can be
adjusted according to changes in the egg-laying date, ambient temperature, food resources,
and female physical condition [4,17,32,33].

Life history theory seeks to explain how natural selection and other evolutionary forces
shape organisms to optimize their survival and reproduction in the face of ecological challenges
posed by the environment [1,2]. The trade-off between egg size and clutch size is one of the
core principles of life history evolution, in which numerous studies have reported a rather
positive covariance between egg size and clutch size: good-quality females may lay more
and larger eggs compared to low-quality females [1,33–35], and adequate food resources
usually lead to the early laying of eggs and larger clutch sizes instead of larger eggs [6,36,37].
Theoretically, the reproductive output of parent birds that lay eggs at a fixed number can be
increased by increasing the size of a single egg, but the physiological constraint hypothesis
predicts that the reproductive output will be constrained by the maternal condition, which
is specifically manifested in larger individuals laying larger eggs, while smaller individuals
lay smaller eggs due to insufficient energy storage in their bodies [38]. Body size can partly
represent the female’s energy storage, so as their body mass increases, the female can supply
more energy (egg mass) or lay more eggs [39]. The size of an egg has costs and benefits, and
individuals might balance these costs and benefits when allocating resources to the size of the
egg [40]. According to life history theory, females should have some flexibility in the allocation
of resources for eggs, including laying optimally sized eggs and small clutch sizes in the case
of abundant resources and laying a relatively small-sized egg size but a large clutch size in the
case of limited resources [2,28,41,42]. However, a constant number of offspring has been found
in some groups. Birds provide care to their offspring during laying, incubating, and brooding.
As the incubation capacity hypothesis predicts that the maximum clutch size that females can
lay is constrained by the incubating capacity (e.g., incubating spots size), this may explain why
most species of shorebirds have a relatively invariant clutch size [43,44]. Thus, most plovers
vary their reproductive output by varying their egg size rather than their clutch size [6].
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On the other hand, the morphological constraint hypothesis holds that an egg’s length
or width is constrained by a female’s partial morphological features. When the egg width
is constrained, females can increase their energy investment by laying longer eggs, for
example, lizards can lay longer eggs to increase their energy supply to eggs as the tail base
width of female lizards constrains the egg width [45]. In light of this phenomenon, some
scholars have put forward the concept of egg-shape allometry, which states that with the
increase in egg size, the growth rate of the egg length and width is different, and the pattern
of allometry in egg shape can be checked by comparing the regression slope between egg
length and egg width [46]. The upper limit hypothesis of maternal constraint predicts that
the egg width is physically constrained by the cloaca of the bird, whilst the increase in the
egg size is mainly achieved by increasing the egg length, which is manifested as the egg
length allometry [42,46].

The Kentish plover Charadrius alexandrinus is a small shorebird (with a body length
of 14~17.5 cm) with an extremely large range and multiple geographical races, with the
bird living in both temperate and subtropical climate zones on four continents. Kentish
plovers often inhabit open and flat coastal beaches and bare land around saltwater lakes
and inland lakes [47,48]. The breeding period of Kentish plover is usually from March to
August every year with certain variations in different regions. They usually lay three oval
eggs per nest, but individual females may produce two or four egg clutches with a length
of 29~35 mm, a width of 22~25 cm, and a mass of 8~11 g [9,47,49]. Female birds lay eggs at
2-day intervals until incubation starts after the last egg has been laid. The incubation period
is approximately 23 to 29 days [9,50]. In China, Kentish plovers breed in coastal areas,
inland lakes, and near reservoirs in the north, inhabit all provinces during migration, and
can be seen throughout most of the southeastern coast during non-breeding periods [51,52].
Because of their wide distribution, the breeding strategies of Kentish plovers are diverse and
have strong plasticity, which attracts the attention of scholars in animal ecology, behavior,
and evolution [43]. Variations in breeding strategies are common phenomena in birds living
in different distribution ranges [10,43,53,54]. For example, reproductive characteristics,
such as egg length and width, clutch size, laying date, incubation rate, growth rate, brood
desertion, and adult survival, often differ distinctively between northern and southern bird
species [7,8,55]. Several studies have investigated how reproductive traits vary within a
single species as the elevation increases and the climate becomes more severe [21,56–58].
We hypothesize that, as far as the avian life history variation along altitudinal gradients
is concerned, breeding in high-elevation habitats results in a shift to a shorter life history
strategy within a single species.

At present, the reproductive biology of the Kentish plover has been studied mainly in
coastal areas, and most of the data come from Europe and North Africa [44,47,59,60]. In China,
the study of Kentish plover reproductive biology mainly focuses on the populations in Bohai
Bay [61] and Qinghai Lake [62]. The populations in the inland arid areas of Western China have
drawn less attention [63]. Due to the influence of geography, temperature, and the environment,
organisms show different reproductive strategies among different populations [42,44,62,64]. In
view of the harsh natural environment of the inland arid areas of Xinjiang, we hypothesize that
Kentish plovers may show flexibility in their breeding strategies to cope with the changeable
environment. Here, we focus on the reproductive traits of the Kentish plover to reveal the
reproductive strategy of this bird adapting to different localities in the arid desert areas of
Xinjiang (Figure 1), where precipitation varies greatly but the temperature differences are not
significant (Figure 2). During the early stage of the breeding season, the climate of Taitema Lake
is extremely dry with frequent dust storms. Hence, we hypothesize that the plovers of Taitema
Lake adapt to the poor climate conditions by laying larger eggs and shortening their incubation
period. According to the physiological constraint hypothesis, we hypothesize that female
traits such as body mass or tarsometatarsus length determine reproductive output, which is
manifested in different egg sizes and clutch sizes in different populations. According to the
upper limit hypothesis, we hypothesize that larger eggs show a more positive allometry in egg
shape. Therefore, the primary objective of this study was to provide baseline information about
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the breeding strategies of Kentish plover populations in the inner arid regions of Xinjiang,
one of the important breeding areas for this species in China.

Figure 1. Map of the study areas of three populations of Charadrius alexandrinus in Xinjiang.

Figure 2. Temperature and precipitation in the three regions (Including the daily average temperature
(AT, #), the daily maximum temperature (Dtmax,4), the daily minimum temperature (DTmin,5),
and the sum of rainfall (RF, 3). Data were averages for 2019 and 2020.).
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2. Materials and Methods
2.1. Study Area

The current study was conducted, during the breeding season of Kentish plover, from
April to July of 2019 and 2020. We collected and compared a variety of reproductive traits
among three geographically distinct Kentish plover populations of Xinjiang, including an
Aibi Lake (AL) population in northwestern Xinjiang, a Taitema Lake (TL) population in
southern Xinjiang, and an artificial reservoir (AR) group population around Urumqi City
in northern Xinjiang (Figure 1).

The Aibi Lake Basin is a closed basin located in the inland area of the Junggar Basin
in Xinjiang in northwestern China (43◦380–45◦520 N, 79◦530–85◦020 E, with an average
altitude of 200 m) [65]. It has a total area of 50,621 km2 where plains make up 25,762 km2.
Aibi Lake, one of the important breeding habitats and temporary rest stations for migratory
birds in western China, is under the jurisdiction of the Xinjiang Aibi Lake Wetland National
Nature Reserve. The lake, characterized by its dry and hot weather, high temperatures, low
precipitation, and little human disturbance, is the largest Salt Lake in western China, with
a water area of 520 km2. The average annual temperature is 8.3 ◦C, and the average annual
precipitation is 90.9 mm. The average annual precipitation on the surface of the lake is
about 95 mm, with the annual evaporation able to reach as high as 1315 mm. Strong winds
with a maximum wind speed of 55 m/s are more likely to occur from April to June. The
Kentish plover populations there usually nest on saline alkali land, sand land, and gravel
substrates in the region [66].

The reservoir group including Liuchengzi Reservoir and Wushihua Reservoir around
Urumqi City is located at the north edge of Bogeda Mountain. They are typical plain
reservoirs mainly used for aquaculture and irrigation. The specific study sites are located
on the southeast bank of Liuchengzi Reservoir (N 44.255835◦, E 87.885218◦, with an average
altitude of 480 m) and the east of Wushihua Reservoir (N 44.196667◦, E 87.741022◦, with an
altitude of about 475 m). Since the distance between the two sites is only 13 km, and there is
no difference in female morphology and egg characteristics between the populations from
these two sites, we combined those two populations as an artificial reservoir population.
This area is close to villages and towns, mostly surrounded by reclaimed farmland or
industrial parks with strong human disturbance, such as livestock and road construction,
which accidentally cause the failure of nests.

Taitema Lake (TL), with a water surface of 300 km2, is located in the southeast margin
of Taklimakan Desert, about 50 km north of Ruoqiang County, Bayingolin Mongol Au-
tonomous Prefecture. It is the terminal lake of three river systems: Tarim River, Cherchen
River, and the rivers on the northern slope of the Altun Mountains [62,67]. The Taitema
Lake region has an extreme continental climate, making it extremely arid. The average an-
nual precipitation is 17.4–42 mm, the average annual evaporation is 2500–3000 mm, and the
extreme maximum temperature is 43.6 ◦C. Furthermore, above-ground vegetation is sparse.
The study area is located on the southeastern shore of the lake (N 39.412433◦, E 88.517855◦,
with an average altitude of 800 m). The breeding habitat of plovers is basically a harsh
desert composed of desert grassland, sand land, and sand dunes, which is well-preserved
with little human disturbance [67,68].

2.2. Data Source

In this study, the regional meteorological data (Figure 2) came from the National
Meteorological Information Center (https://www.nmic.gov.cn/en/, accessed on 16 Au-
gust 2021) of the China Meteorological Administration, with data on temperature and
precipitation obtained from the weather station, closest to the study region. We calculated
the average value every ten days, including the daily average temperature (AT), the daily
maximum temperature (DTmax), the daily minimum temperature (DTmin), the daily tem-
perature difference (DD), and the sum of rainfall (RF) during the breeding season from
27 March to 24 July each year in 2019 and 2020.

https://www.nmic.gov.cn/en/
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2.3. Data Collection and Traits Measurement

We found the nests by watching the birds with a telescope and binoculars, and by
searching on foot inside the nesting grounds during the breeding season [69]. We monitored
the nests every 3–4 days each year during the breeding season until the hatching of the
eggs or the failure of the breeding attempt. The morphological traits of the female parent
and their eggs’ size characteristics (length and width) were measured with a digital caliper
(0.01 mm) and then weighed with a digital scale (0.01 g) [69]. GPS data of the nests were
recorded. We captured the breeding female parent with a walk-in funnel trap placed over
the nests that had been incubated for at least seven days [62]. The 12, 30, and 42 female
plovers were captured and measured at the AL, AR, and TL locations, and the number of
nests was 20, 77, and 61 for AL, AR, and TL, respectively. The same combination of the
number of recorded nests (20, 77, and 61 at the AL, AR, and TL locations, respectively)
also included the abandoned or trampled nests. The captive parent were then banded
with a metal ring and three colorful rings with unique combinations as the marker. Female
body mass (FBM, g) is considered as the female’s weight after laying all eggs. Female
tarsometatarsus length (FTL, mm) is the tarsometatarsus length on the right side of the
female. Egg mass (OEM, single egg weight, g), clutch size (CS, the total number of eggs
laid in a single breeding period), egg length (EL, linear length at the longest end of the
egg, mm), egg width (EW, linear length at the maximum width of the egg, mm), and egg
shape (ES, ratio of egg width and egg length) were measured to analyze the allometry in
egg shape.

We also calculated egg volume (EV, cm3): EV = Kv × L × W2, where
Kv = 0.5236 − (0.5236 × 2 × (L/W)/100), L = egg length, W = egg width, and clutch
volume (CV, the sum of the volumes of all eggs in a single breeding period, cm3) [70]. We
estimated the laying date (LD) through observation and floating the eggs in lukewarm
water [69]. We used the Julian day, which we calculated as the number of days between the
1 April (i.e., 1) of each year, as the egg-laying date. The time interval between the beginning
and the end of the hatching of the plover was taken as the incubation period (IP). The
monitoring of the AL population was too difficult and the number of nests was too small,
so the data of the incubation period could not be obtained through continuous monitoring.

2.4. Statistical Analysis

The collected data were sorted through with Excel data. Non-normally distributed
data were log10 converted to meet the assumption, i.e., the Kolmogorov–Smirnov normality
test and Levene’s variance homogeneity test. We used one-way ANOVA to make multiple
comparisons on the female body mass, tarsometatarsus length, egg size, clutch volume,
and other traits of the three populations with post hoc Tukey’s tests. For the data that
did not meet the above assumptions, we used the nonparametric Kruskal–Wallis test to
examine data differences between the three populations with post hoc Steel Dwass tests
(multiple comparisons). We used analysis of an independent t-test to examine the annual
differences in the reproductive traits of each population; the results showed no significant
annual differences in reproductive traits among them, so two years of reproductive traits
data from each population were combined for subsequent analysis. Model II regression
in the “lmodel2” package was used to carry out regression analyses between the egg size,
clutch size, clutch volume, and laying time one by one, as well as between the egg size,
clutch size, clutch volume, body mass, and tarsometatarsus length of their female parent
one by one, so as to verify the effects of laying time and female morphology on egg size
and clutch size.

For the egg shape allometry, we first determined the regression between egg length and
egg width. If the slope was greater than 1, there existed egg shape allometry. Then, residuals
regarding the egg length and egg width with clutch size were extracted, respectively, to
eliminate the effects of the clutch size on the egg length and width [42], and regression was
determined between the residual egg length and the residual egg width to test whether
there is allometry for the egg shape after removing the effects of the clutch size.
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Model selection analysis was conducted to test the effect of environmental factors and
female morphological traits on egg volume and clutch volume. Daily average temperature,
daily temperature difference (DD), daily maximum temperature, daily rainfall, laying
date, clutch size, female body mass, and female tarsometatarsus length were taken as
independent variables to carry out the multinomial logistic model analysis. The populations
were included as a fixed index, and the parameter years were entered as a random effect in
order to control for interpopulation phylogenetic relatedness.

Akaike information criterion (AIC) was used to compare models and determine two
principles of the best model screening: (1) the minimum AIC value is required and (2) the
dealt value of the model < 2. All data are listed in the form of the mean ± standard error
(mean ± SE), and all operations were completed in R.v.3.6.3 software (R Development Core
Team, https://cran.r-project.org/), using the packages “ggplot” and “gplots”. Differences
were considered significant when p < 0.05.

3. Results
3.1. Female Reproductive Traits among the Populations

A total of 440 eggs from 158 nests of Kentish plovers in three geographically distinct
populations were measured from April to July of 2019 and 2020. Among them, there are
54 eggs from 20 nests in AL, 175 from 61 nests in TL, and 211 from 77 nests in the AR.

The results show that there is no significant difference in female body mass among
the three populations, while the female tarsometatarsus length of the AL population was
significantly longer than that of the other two populations. There was also no significant
difference in clutch size among the populations, but there were significant differences in
egg volume and clutch volume in the TL population, which were larger than those of the
other two populations. Additionally, the egg width, egg volume, and clutch volume of the
AR population were significantly larger than those of the AL population (Table 1).

Table 1. Descriptive statistics of female reproductive traits in three populations of C. alexandrinus.

Traits AL (N = 20) AR (N = 77) TL (N = 61) F-Level p-Value

Female body mass *#, g 43.42 ± 1.52 43.79 ± 3.37 43.95 ± 2.93 F2, 75 = 0.127, p = 0.881
Female tarsometatarsus

length *#, mm 29.47 ± 1.12 a 28.51 ± 0.84 b 28.38 ± 1.23 b F2, 81 = 4.602, p = 0.012

Egg length †, mm 32.38 ± 1.30 B 32.36 ± 1.08 B 33.01 ± 1.24 A F2, 437 = 15.810, p < 0.001
Egg width #, mm 23.10 ± 0.55 Bb 23.38 ± 0.55 Ba 23.64 ± 0.54 A F2, 436 = 23.070, p < 0.001

Egg shape # 0.71 ± 0.03 0.72 ± 0.03 0.72 ± 0.03 F2, 436 = 3.961 p = 0.020
Egg volume #, cm3 8.80 ± 0.60 Bb 9.02 ± 0.58 Ba 9.40 ± 0.64 A F2, 436 = 28.790 p < 0.001

Clutch size † 2.75 ± 0.43 2.96 ± 0.31 2.87 ± 0.34 χ2 = 5.929 p = 0.052
Clutch volume †, cm3 24.57 ± 4.02 Bb 26.39 ± 3.19 a 27.07 ± 3.50 A χ2 = 12.249 p = 0.002

Incubation period &, day / 26 ± 1.33 a 25.09 ± 0.51 b U = 54.50 p = 0.037

Note: Different capital letters indicate significance at the p < 0.01 level; Different lowercase letters indicate
significance at the p < 0.05 level. The monitoring of AL population is too difficult and the number of nests was too
small, so the data of incubation period could not be obtained by continuous monitoring. * AL n = 12; AR n = 30;
TL n = 42. # ANOVA; † Nonparametric Kruskal–Wallis test; & Nonparametric Mann–Whitney U test.

3.2. Laying Date and Reproductive Traits

According to our observations, the AR population is strongly affected by the interfer-
ence of artificial water level control and regional grazing. The first laying peak appears at
the early stage of the breeding season, while the second laying peak immediately follows
the expansion of the suitable nesting area in early June when the water level retreats to its
lowest point. In addition, the average incubation period (IP) of the plover population in
the AR is significantly longer than that of the TL population (Table 1).

Among the three populations, there was a significant negative correlation between the
female body mass and the laying date of the plover in TL (Figure 3A), which showed that the
heavier females laid eggs earlier. There was also a significant negative correlation between
the laying date and clutch size and clutch volume of the AL population (Figure 3B,F). The
laying date of the AR population significantly restricted the egg volume (Figure 3C–E) and

https://cran.r-project.org/
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clutch volume (Figure 3F). With the postponement of the laying date, the plovers there
produce relatively small eggs, representing lower reproductive output.

Figure 3. Regressions of female body mass (A), clutch size (B), egg length (C), egg width (D), egg
volume (E), clutch volume (F) and laying date from three populations of C. alexandrinus. Fitted
reduced major axis regression model and statistical significance (p < 0.05) are indicated in each case.
AL, Aibi Lake–Asterisk; AR, Artificial Reservoir–Black Triangle; TL, Taitema Lake–White Triangle.
Points were jittered using the geom jitter function.

3.3. Reproductive Output and Female Traits

The results show that heavier and larger females lay larger eggs. Among the three
populations, the female body mass in TL was significantly positively correlated with clutch
size (Figure 4A), egg width, egg volume (Figure 4B,C), and clutch volume (Figure 4D).
There was an extremely significant positive correlation between the female tarsometatarsus
length and egg length (Figure 5A) and clutch volume (Figure 5B) in the AR population.
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Figure 4. Regressions of female body mass and clutch size (A), egg width (B), egg volume (C), clutch
volume (D) from three populations of C. alexandrinus. Fitted reduced major axis regression model
and statistical significance (p < 0.05) are indicated in each case. AL, Aibi Lake–Asterisk; AR, Artificial
Reservoir–Black Triangle; TL, Taitema Lake–White Triangle. Points were jittered using the geom
jitter function.

Figure 5. Regressions of female tarsometatarsus length and egg length (A), clutch volume (B) from
three populations of C. alexandrinus. Fitted reduced major axis regression model and statistical
significance (p < 0.05) are indicated in each case. AL, Aibi Lake–Asterisk; AR, Artificial Reservoir–
Black Triangle; TL, Taitema Lake–White Triangle. Points were jittered using the geom jitter function.



Animals 2023, 13, 2260 10 of 16

3.4. Model Selection

The egg size and clutch volume model revealed that that body mass is again a signifi-
cant predictor of variation in egg size. The results of the egg size model selection show that
the best model for egg volume of the three populations of birds includes female body mass,
female tarsometatarsus length, and average temperature. The AICc value of the model is
−197.50, and the weight is 0.948 (Table 2). The best model of the clutch volume of three
populations of birds includes female body mass, egg length, and average temperature. The
AICc value of the model is −197.00, and the weight is 0.611 (Table 2).

Table 2. Model selection for reproductive output of C. alexandrinus.

Parameter
Optimization Model

Egg Volume Clutch Volume

Clutch size
Female body mass + +

Female tarsometatarsus length +
Laying date
Egg length +
Egg width

Average temperature + +
Daily temperature difference
Daily maximum temperature

Rainfall
Population

AICc −197.50 −197.00
Weight 0.948 0.611

+ indicates that the selected parameters of the optimal model; Weight was the proportion of the selected parameters
in all parameters of the optimal model.

3.5. Allometry

The regression slope (slope = 1.625, Figure 6A) between the egg length and egg width
was significantly larger than 1 (p < 0.0001), indicating that there was allometry in the
egg shape, and the growth rate of the egg length was significantly faster than that of the
egg width. After extracting the regression residuals of the egg length, egg width, and
clutch size, the regression slope between the egg length residuals and egg width residuals
(slope = 2.277, Figure 6B) was also significantly larger than 1 (p < 0.0001), indicating that
after eliminating the effect of clutch size, the egg shape allometry still exists, and the growth
rate of the egg length is significantly faster than that of egg width.

Figure 6. Allometry of egg shape of C. alexandrinus ((A) egg shape allomery, (B) egg shape allometry
by residuals). The eggs–Black Triangle; Regression relationship between the egg length and egg
width−Dashed Line.
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4. Discussion
4.1. Differences in Reproductive Traits among the Populations

The average clutch size in the three populations (2.86 ± 0.35~2.96 ± 0.35) was similar
to that at other sites [44,47–50]. The proportion of nests with three eggs in the three
populations in the study area was higher than 85%, which is higher than about 70%
reported at other sites [9,47]. Compared with other sites, the average egg volume was also
larger [47,69,71]. The clutch size and the egg volume are generally considered to be related
to food supply [37]. Larger eggs have been proven to improve the hatching success rate and
increase the initial energy reserve of nestling [36,40]. For example, the TL population in a
relatively harsh environment with high daily average temperatures produces larger eggs
relative to body size, which strongly supports our hypothesis that the plovers of TL adapt
to the poor climate conditions by laying larger eggs and shortening their incubation period.

4.2. Relationship between Reproductive Traits and Laying Date

All three populations began to incubate in April, which was later than that in Eu-
ropean and Northern African populations [47,60]. The shorter breeding season may be
related to the late start of laying, which may be limited by climatic conditions (mainly low
temperatures in early spring) [72]. Secondly, the laying data are life history characteristics,
which depend on the habitat conditions, including altitudinal gradients. Compared with
other populations, the TL population lives under poor early climate conditions due to
the higher altitude (850 m), which results in shorter female tarsometatarsus length, later
laying dates, and shorter incubation periods, resulting in the shortening of the breeding
season in TL [63], which strongly supports our hypothesis that breeding in high-elevation
habitats results in a shift to a shorter life history strategy within a single species. Since
the interference of livestock in the late breeding season is the main reason for the nest-
ing failure of the AR population (unpublished data), laying begins earlier, which may be
affected by temperature, resulting in a long incubation period. The results of another of
our manuscripts in preparation indicated that there were differences in the nest survival
rates among the populations, in which the rate of the TL population was the highest (0.702,
n = 61 nests) and that of the AR population was the lowest (0.296, n = 77 nests) due to
predation, parental desertion, and the higher possibility of being trampled by livestock.
We also discovered that the nest survival rate of the AR population decreased with the
postponement of the breeding season, and the females there would lay relatively small
eggs, resulting in lower reproductive output. These results testified the fact that the AR
population manifested relatively flexible reproductive strategies, such as a trade-off be-
tween egg size and clutch size, in response to the lower survival rate. Additionally, higher
levels of human interference, such as artificial water level control, regional grazing, road
construction, as well as predation risks also affect the end of reproduction by causing birds
to leave early, which led to higher nesting failure in the AR population. The later start of
laying and shorter laying time of the TL population may be the adaptation strategy of the
population to severe environmental conditions, which is consistent with the reproductive
limit hypothesis at high altitudes [63,73].

There was a significant negative correlation between the laying date and egg volume
and clutch volume of the birds in the AR, which showed that the egg size and clutch
volume decreased with the passage of the laying date. There may be four reasons for this
phenomenon. Firstly, individuals who lay eggs early may be older females. They arrive
early and start breeding early. Usually, young females tend to lay eggs late, and lay smaller
eggs [6]. Secondly, according to the embryonic temperature hypothesis [73], larger eggs
can obviously reduce the mortality of offspring in cold environments [74]. At the early
stage of reproduction, the temperature is low, and it is beneficial for hatching to produce
larger eggs. Thirdly, it is also possible that the eggs produced in the later stage belong to
the second clutch, which is due to compensatory laying after the failure of hatching in the
first clutch. Usually the eggs in the second clutch are smaller. Finally, in the inland arid
areas where water resources are relatively scarce, the change in water level directly affects
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the potential habitat for nesting. For example, after the water level retreats due to artificial
control in the middle and late breeding period, a large area of ideal nesting areas is created,
resulting in explosive nesting and laying in the AR.

4.3. Egg Size and Reproductive Output Are Affected by Both Maternal and
Environmental Conditions

There was a significant positive correlation between the clutch size, egg size, clutch
volume, and bird postpartum weight in TL. In the face of the local harsh climate, larger
females will produce a relatively large number of eggs to improve the hatching success
rate and the initial energy reserve of nestling [36,49,75]. It has been suggested that egg
size has a significant impact on the performance of nestling [40]. The tarsometatarsus
length is an important identification indicator of bird age or quality. Our results show
that there is a significant positive correlation between reproductive output and the female
tarsometatarsus length in the AR. In addition, food supplementation usually leads to early
laying and a larger clutch size rather than larger eggs, which is common in birds [36,37].
However, we noticed that the females at the AL location, which had significantly longer
tarsometatarsus lengths relative to the females at the AR and TL locations, did not have
greater reproductive output. This result suggests that other environmental factors at this
location have a stronger influence that negates the normal benefit associated with increased
tarsometatarsus length and this would need to be delineated in subsequent research.

As the parent birds lay eggs at a fixed number, Kentish plover can increase their
reproductive output by increasing the size of a single egg, but this is limited by maternal
and environmental conditions. According to the model selection results (Table 2), the egg
volume and clutch volume of the three plover populations are affected by the females’
traits, including the females’ body mass and the females’ tarsometatarsus length, which is
consistent with our hypothesis that female traits, such as body mass and tarsometatarsus
length, determine reproductive output, which is manifested in different egg sizes and
clutch sizes in different populations. The reproductive output of individuals with larger
body sizes is also greater, which conforms to the prediction of the physiological constraint
hypothesis [38]. Additionally, the clutch volume of the plover is also affected by the egg
length, which may be due to the limitation of its hard shell by the birth cloaca, and the
size of a single egg can only be increased by increasing the egg length, which supports the
upper limit hypothesis of maternal constraint [42,46].

4.4. The Allometry of Egg Shape

Egg shape, the same as egg size, is a highly variable characteristic in the life history
of birds [2,31,48,76]. However, little is known about the adaptive significance of bird egg
shape and how the differences arise and evolve [77]. We found that the growth rate of the
egg length of Kentish plover is significantly faster than that of egg width (Figure 6), which
confirms the prediction of the upper limit hypothesis and is consistent with the results of
the model selection. Due to the intermittent laying mode of birds (such as laying every
other day), only one egg is laid at a time. Theoretically, the size of a single egg will not be
limited by the volume of the abdominal cavity. At the same time, the egg width of birds
will not be limited due to the open pelvis (some birds lay nearly round eggs). Therefore, in
addition to the limitation of the birth cloaca, the explanation of the egg length allometry
may be related to other factors, such as nest size, structure, shape, and the climate [78].
Further research is needed to determine the underlying mechanism.

5. Conclusions

The present study strongly supported our hypothesis that Kentish plover may show
flexibility in breeding strategies to cope with the changeable environment. The three
populations of plovers have precocial chicks and invariant clutch sizes. The laying date of
the northern Xinjiang populations was earlier than that of the southern Xinjiang populations.
The environment in TL is the most barren and the climate is the harshest among the three,
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and the female tarsometatarsus length is the smallest, but the egg size and the clutch
volume are significantly larger than those of the AR and AL populations. Female body
mass has a significant positive correlation with egg size, clutch size, and clutch volume in
all three populations. The egg width, egg volume, and clutch volume of the AR population
were significantly larger than those of the AL population, and the female tarsometatarsus
length of the population has a significant positive correlation with the egg length and
clutch volume. The single egg size and clutch volume of the three bird populations are
affected by morphological constraints and maternal constraints. In total, our observation
results of a relatively high average egg size and clutch size imply that the saline wetlands
of Western China are an important breeding habitat for Kentish plover. Finally, future
research is recommended to further clarify the underlying mechanism of the reproductive
strategies of the species in response to regional environmental modification resulting from
anthropogenic landscape features (human activities), altitudinal gradients, and global
climate change.
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